Hadoop In The Trough Of Disillusionment

Kevin Feasel

2017-03-22

Hadoop

Alex Woodie has an article about companies moving away from Hadoop:

Instead of trying to fit all the barnyard animals into the name (Cutting suggested Hadoop + Hive + Hbase + Spark + all the others omnivores, as well as “Cutting Con,” which maybe actually would have worked), the conference organizers went back to the roots of the Strata conference in 2011.

(Note to self: it’s ALL about the data.)

That doesn’t mean Hadoop is irrelevant. We will need a place to land unstructured and semi-structured data. But when the biggest Hadoop distributor removes the name of Hadoop from its flagship conference, it’s clearly an indicator that things haven’t gone quite as expected.

I’ve seen several articles along these lines lately and couldn’t resist the Gartner callout.  I consider this a helpful antidote to the “Technology X will solve all your problems!” marketing nonsense, which followed the “Technology X will solve all my problems!” developer nonsense as developers find new and shiny toys.  People are realizing where Hadoop is a great solution and where it’s a bad solution, and the same goes for other technologies; my hope is that after another 9-12 months of “Is Hadoop doomed?” types of articles, it’ll settle out into a long-term growth pattern where people understand its appropriate uses.

Related Posts

Clients For Working With HDFS

Mark Litwintschik reviews several clients for working with the Hadoop Distributed Filesystem: The Hadoop Distributed File System (HDFS) allows you to both federate storage across many computers as well as distribute files in a redundant manor across a cluster. HDFS is a key component to many storage clusters that possess more than a petabyte of […]

Read More

Monitoring Apache NiFi With A Custom Dashboard

Tim Spann has started a new series on monitoring Apache NiFi: In this little proof of concept work, we grab some of these flows process them in Apache NiFi and then store them in Apache Hive 3 tables for analytics. We should probably push the data to HBase for aggregates and Druid for time series. […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031