Hadoop In The Trough Of Disillusionment

Kevin Feasel

2017-03-22

Hadoop

Alex Woodie has an article about companies moving away from Hadoop:

Instead of trying to fit all the barnyard animals into the name (Cutting suggested Hadoop + Hive + Hbase + Spark + all the others omnivores, as well as “Cutting Con,” which maybe actually would have worked), the conference organizers went back to the roots of the Strata conference in 2011.

(Note to self: it’s ALL about the data.)

That doesn’t mean Hadoop is irrelevant. We will need a place to land unstructured and semi-structured data. But when the biggest Hadoop distributor removes the name of Hadoop from its flagship conference, it’s clearly an indicator that things haven’t gone quite as expected.

I’ve seen several articles along these lines lately and couldn’t resist the Gartner callout.  I consider this a helpful antidote to the “Technology X will solve all your problems!” marketing nonsense, which followed the “Technology X will solve all my problems!” developer nonsense as developers find new and shiny toys.  People are realizing where Hadoop is a great solution and where it’s a bad solution, and the same goes for other technologies; my hope is that after another 9-12 months of “Is Hadoop doomed?” types of articles, it’ll settle out into a long-term growth pattern where people understand its appropriate uses.

Related Posts

Controlling Partition and File Counts in Spark

Landon Robinson shows how we can control the number of partitions (and therefore the number of output files) on reduce-style jobs in Spark: Whatever the case may be, the desire to control the number of files for a job or query is reasonable – within, ahem, reason – and in general is not too complicated. And, it’s often […]

Read More

Creating an Azure Databricks Cluster

Brad Llewellyn shows how you can create an Azure Databricks cluster: There are three major concepts for us to understand about Azure Databricks, Clusters, Code and Data.  We will dig into each of these in due time.  For this post, we’re going to talk about Clusters.  Clusters are where the work is done.  Clusters themselves […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031