Hadoop In The Trough Of Disillusionment

Kevin Feasel

2017-03-22

Hadoop

Alex Woodie has an article about companies moving away from Hadoop:

Instead of trying to fit all the barnyard animals into the name (Cutting suggested Hadoop + Hive + Hbase + Spark + all the others omnivores, as well as “Cutting Con,” which maybe actually would have worked), the conference organizers went back to the roots of the Strata conference in 2011.

(Note to self: it’s ALL about the data.)

That doesn’t mean Hadoop is irrelevant. We will need a place to land unstructured and semi-structured data. But when the biggest Hadoop distributor removes the name of Hadoop from its flagship conference, it’s clearly an indicator that things haven’t gone quite as expected.

I’ve seen several articles along these lines lately and couldn’t resist the Gartner callout.  I consider this a helpful antidote to the “Technology X will solve all your problems!” marketing nonsense, which followed the “Technology X will solve all my problems!” developer nonsense as developers find new and shiny toys.  People are realizing where Hadoop is a great solution and where it’s a bad solution, and the same goes for other technologies; my hope is that after another 9-12 months of “Is Hadoop doomed?” types of articles, it’ll settle out into a long-term growth pattern where people understand its appropriate uses.

Related Posts

Working With Skewed Data In Pig

Dmitry Tolpeko explains how you can use the Weighted Range Partitioner in Apache Pig to work with highly skewed data: The problem is that there are 3,000 map tasks are launched to read the daily data and there are 250 distinct event types, so the mappers will produce 3,000 * 250 = 750,000 files per day. That’s […]

Read More

Spark Streaming Using DStreams Or DataFrames?

Yaroslav Tkachenko contrasts the two methods for operating on data with Spark Streaming: Spark Streaming went alpha with Spark 0.7.0. It’s based on the idea of discretized streams or DStreams. Each DStream is represented as a sequence of RDDs, so it’s easy to use if you’re coming from low-level RDD-backed batch workloads. DStreams underwent a lot […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031