Removing Time Series Auto-Correlation

Vincent Granville shows a simple technique for removing auto-correlation from time series data:

A deeper investigation consists in isolating the auto-correlations to see whether the remaining values, once decorrelated, behave like white noise, or not. If departure from white noise is found, then it means that the time series in question exhibits unusual patterns not explained by trends, seasonality or auto correlations. This can be useful knowledge in some contexts  such as high frequency trading, random number generation, cryptography or cyber-security. The analysis of decorrelated residuals can also help identify change points and instances of slope changes in time series.

Dealing with serial correlation is a big issue in econometrics; if you don’t deal with it in an Ordinary Least Squares regression, your regression will appear to have more explanatory power than it really does.

Related Posts

Interpreting P-Value Histograms

David Robinson visualizes and interprets different p-value histograms: So you’re a scientist or data analyst, and you have a little experience interpreting p-values from statistical tests. But then you come across a case where you have hundreds, thousands, or even millions of p-values. Perhaps you ran a statistical test on each gene in an organism, or on […]

Read More

The Magic Of Sampling

Nathan LeClaire reminds us of an important story that statisticians have been telling us for a couple centuries: It starts slowly. Maybe your home-grown centralized logging cluster becomes more difficult to operate, demanding unholy amounts of engineer time every week. Maybe engineers start to find that making a query about production is a “go get […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728