Looping In R

Kevin Feasel

2017-02-08

R

Klodian Dhana explains how to build a for loop in R:

I used linear mixed effect model and therefore I loaded the lme4 library. The loop should work with other regression analysis (i.e. linear regression), if you modify it according to your regression model. If you don’t know which part to modify, leave a comment below and I will try to help.

As other loops, this call variables of interest one by one and for each of them extract and store the betas, standard error and p value. Remember, this code is specific for linear mixed effect models.

Read the whole thing.  It’s good to keep in mind, though, that set-based R operations tend to perform best, so save looping for cases in which you can’t build a set-based function.

Related Posts

Reinforcement Learning with R

Holger von Jouanne-Diedrich takes us through concepts in reinforcement learning: At the core this can be stated as the problem a gambler has who wants to play a one-armed bandit: if there are several machines with different winning probabilities (a so-called multi-armed bandit problem) the question the gambler faces is: which machine to play? He could “exploit” one […]

Read More

Biases in Tree-Based Models

Nina Zumel looks at tree-based ensembling models like random forest and gradient boost and shows that they can be biased: In our previous article , we showed that generalized linear models are unbiased, or calibrated: they preserve the conditional expectations and rollups of the training data. A calibrated model is important in many applications, particularly when financial data […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728