Data Frame Serialization In R

Kevin Feasel



David Smith shows a new contender for serializing data frames in R, fst:

And now there’s a new package to add to the list: the fst package. Like the data.table package (the fast data.frame replacement for R), the primary focus of the fst package is speed. The chart below compares the speed of reading and writing data to/from CSV files (with fwrite/fread), feather, fts, and the native R RDS format. The vertical axis is throughput in megabytes per second — more is better. As you can see, fst outperforms the other options for both reading (orange) and writing (green).

These early numbers look great, so this is a project worth keeping an eye on.

Related Posts

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More

Using R To Hit Azure ML From Power BI

Leila Etaati shows how you can use R to hit an Azure ML endpoint to populate a data set in Power BI: You need to create a model in Azure ML Studio and create a web service for it. The traditional example in Predict a passenger on Titanic ship is going to survived or not? […]

Read More


February 2017
« Jan Mar »