Data Frame Serialization In R

Kevin Feasel



David Smith shows a new contender for serializing data frames in R, fst:

And now there’s a new package to add to the list: the fst package. Like the data.table package (the fast data.frame replacement for R), the primary focus of the fst package is speed. The chart below compares the speed of reading and writing data to/from CSV files (with fwrite/fread), feather, fts, and the native R RDS format. The vertical axis is throughput in megabytes per second — more is better. As you can see, fst outperforms the other options for both reading (orange) and writing (green).

These early numbers look great, so this is a project worth keeping an eye on.

Related Posts

Housing Prices In Ames, Iowa: A Kaggle Competition

Kathryn Bryant and M. Aaron Owen share their Kaggle experiences.  First, Kathryn, et al: The lifecycle of our project was a typical one. We started with data cleaning and basic exploratory data analysis, then proceeded to feature engineering, individual model training, and ensembling/stacking. Of course, the process in practice was not quite so linear and […]

Read More

Data Wrangling At Scale

John Mount has a short article showing off the cdata package: Suppose we needed to un-pivot this data into a row oriented representation. Often big data transform steps can achieve a much higher degree of parallelization with “tall data”. With the cdata package this transform is easy and performant, as we show below. Read the whole thing.

Read More


February 2017
« Jan Mar »