Data Science Languages

Alessandro Piva provides preliminary metrics on language usage among self-described data scientists:

Programming is one of the five main competence areas at the base of the skill set for a Data Scientist, even if is not the most relevant in term of expertise (see What is the right mix of competences for Data Scientists?). Considering the results of the survey, that involved more than 200 Data Scientist worldwide until today, there isn’t a prevailing choice among the programming languages used during the data science’s activities. However, the choice appears to be addressed mainly to a limited set of alternatives: almost 96% of respondents affirm to use at least one of R, SQL or Python.

These results don’t surprise me much.  R has slightly more traction than Python, but the percentage of people using both is likely to increase.  SQL, meanwhile, is vital for getting data, and as we’re seeing in the Hadoop space, as data platform products get more mature, they tend to gravitate toward a SQL or SQL-like language.  Cf. Hive, Spark SQL, Phoenix, etc.

Related Posts

Defining TF-IDF

Bruno Stecanella explains the concept behind TF-IDF: TF-IDF was invented for document search and information retrieval. It works by increasing proportionally to the number of times a word appears in a document, but is offset by the number of documents that contain the word. So, words that are common in every document, such as this, what, and if, rank […]

Read More

Defining Tidy Data

John Mount shares thoughts about the concept of tidy data: A question is: is such a data set “tidy”? The paper itself claims the above definitions are “Codd’s 3rd normal form.” So, no the above table is not “tidy” under that paper’s definition. The the winner’s date of birth is a fact about the winner […]

Read More

Categories

December 2016
MTWTFSS
« Nov Jan »
 1234
567891011
12131415161718
19202122232425
262728293031