Pie Charts

Kevin Feasel

2016-11-21

R

Peter Ellis defends pie charts under very specific circumstances:

The usual response from statisticians and data professionals to pie charts ranges from lofty disdain to outright snobbery. But sometimes I think they’re the right tool for communication with a particular audience. Like others I was struck by this image from New Zealand news site stuff.co.nz showing that nearly half the earthquake energy of the past six years came in one day (last Sunday night, and the shaking continues by the way). Pie charts work well when the main impression of relative proportions to the whole is obvious, and fine comparisons aren’t needed.

Here’s my own version of the graphic. I polished this up during a break while working at home due to the office being shut for earthquake-related reasons:

Consider me in the lofty disdain camp.  That said, this is probably the best case scenario for a pie chart:  when looking at relative percentage of one dominant element versus the remaining set.

Related Posts

From Excel to R: Three Examples

Abdul Majed Raja has a few examples of things which are easy to do in Excel and how you can do them in R: Create a difference variable between the current value and the next valueThis is also known as lead and lag – especially in a time series dataset this varaible becomes very important in feature engineering. In […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More

Categories

November 2016
MTWTFSS
« Oct Dec »
 123456
78910111213
14151617181920
21222324252627
282930