Preemptive Scheduling

Ewald Cress looks at preemptive scheduling:

Cooperative scheduling is a relay race: you simply don’t stop without passing over the baton. If you write code which reaches a point where it may have to wait to acquire a resource, this waiting behaviour must be implemented by registering your desire with the resource, and then passing over control to a sibling worker. Once the resource becomes available, it or its proxy lets the scheduler know that you aren’t waiting anymore, and in due course a sibling worker (as the outgoing bearer of the scheduler’s soul) will hand the baton back to you.

This is complicated stuff, and not something that just happens by accident. The textbook scenario for such cooperative waiting is the traditional storage engine’s asynchronous disk I/O behaviour, mediated by page latches. Notionally, if a page isn’t in buffer cache, you want to call some form of Read() method on a database file, a method which only returns once the page has been read from disk. The issue is that other useful work could be getting done during this wait.

Read on for a detailed example looking at xp_cmdshell.

Related Posts

Understanding Hash Match Aggregates

Itzik Ben-Gan continues his series on grouping and aggregating data by looking at the hash match aggregation process: The estimated CPU cost for the Hash Aggregate in the plan for Query 8 is 0.166344, and in Query 9 is 0.16903. It could be an interesting exercise to try and figure out exactly in what way […]

Read More

Row Width And Snapshot Isolation

Kendra Little shows us the impact that row width has on snapshot isolation: So I went to work to demonstrate row width impact on the version store — when only a tiny bit column is changed in the row. Here’s how I did the test: I created two tables, dbo.Narrow and dbo.Wide. They each each have a […]

Read More

Categories

November 2016
MTWTFSS
« Oct Dec »
 123456
78910111213
14151617181920
21222324252627
282930