Multi-Model Time Series Analysis

The folks at ELEKS discuss what to do when a single time series model just won’t cut it:

With the emergence of the powerful forecasting methods based on Machine Learning, future predictions have become more accurate. In general, forecasting techniques can be grouped into two categories: qualitative and quantitative. Qualitative forecasts are applied when there is no data available and prediction is based only on expert judgement. Quantitative forecasts are based on time series modeling. This kind of models uses historical data and is especially efficient in forecasting some events that occur over periods of time: for example prices, sales figures, volume of production etc.

The existing models for time series prediction include the ARIMA models that are mainly used to model time series data without directly handling seasonality; VAR modelsHolt-Winters seasonal methods, TAR modelsand other. Unfortunately, these algorithms may fail to deliver the required level of the prediction accuracy, as they can involve raw data that might be incomplete, inconsistent or contain some errors. As quality decisions are based only on quality data, it is crucial to perform preprocessing to prepare entry information for further processing.

Treating time series data as a set of waveform functions can generate some very interesting results.

Related Posts

Taking A Random Walk

Dan Goldstein describes the basics of Brownian motion: I was sitting in a bagel shop on Saturday with my 9 year old daughter. We had brought along hexagonal graph paper and a six sided die. We decided that we would choose a hexagon in the middle of the page and then roll the die to […]

Read More

Estimating Used Car Prices

Kevin Jacobs wants to estimate the value of his car and shows how to set up a machine learning job to do this: As you can see, I collected the brand (Peugeot 106), the type (1.0, 1.1, …), the color of the car (black, blue, …) the construction year of the car, the odometer of […]

Read More

Categories

November 2016
MTWTFSS
« Oct Dec »
 123456
78910111213
14151617181920
21222324252627
282930