More NFL Alerts

Kevin Feasel

2016-09-12

Python

Allison Tharp has an update to her NFL Alerts Python script:

Next, I wanted to make the alerts be a little more meaningful.  The alert for a scoring play was already pretty good – it sends something like: BUF – Q4 – TD – J.Boykin 4 yd. pass from C.Jones (pass failed) Drive: 8 plays, 83 yards in 1:08 IND (19) at BUF (18).  This is good, and in fact it is what I want the rest of the alerts to look like.  However, I’d like the subject of the email to have the name of the team that scored (before it was just ‘Scoring Play’).

To do that, I needed to find out how to get the name of the scoring team.  This was a little tricky because the documentation for the nflgame library, though pretty good, doesn’t give a good indication on how to find this.

Read on for more details, including specifics on turnovers and penalties.

Related Posts

Logistic Regression Defaults and sklearn

Giovanni Lanzani shares some thoughts on scikit-learn defaults for Logistic Regression: If you read the post, you can see that the biggest problem with the choice is that, unless your data is regularized, you will train a model that probably under performs: you are unnecessarily penalizing it by making it learn less than what it […]

Read More

Python and R Data Reshaping

John Mount takes us through a couple of data shaping packages: The advantages of data_algebra and cdata are: – The user specifies their desired transform declaratively by example and in data. What one does is: work an example, and then write down what you want (we have a tutorial on this here).– The transform systems can print what a transform is going to […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930