MapReduce

Kevin Feasel

2016-09-05

Hadoop

I talk about Hadoop a good bit on Curated SQL.  Therefore, I think it’s worth mentioning the original MapReduce paper that Jeffrey Dean and Sanjay Ghemawat published in 2004:

MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key. Many real world tasks are expressible in this model, as shown in the paper.

Programs written in this functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the details of partitioning the input data, scheduling the program’s execution across a set of machines, handling machine failures, and managing the required inter-machine communication. This allows programmers without any experience with parallel and distributed systems to easily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large cluster of commodity machines and is highly scalable: a typical MapReduce computation processes many terabytes of data on thousands of machines. Programmers find the system easy to use: hundreds of MapReduce programs have been implemented and upwards of one thousand MapReduce jobs are executed on Google’s clusters every day.

If you’ve never read this paper before, today might be a good day to do so.

Related Posts

Flink’s State Processor API

Seth Wiesman and Fabian Hueske show off Apache Flink’s State Processor API: The State Processor API that comes with Flink 1.9 is a true game-changer in how you can work with application state! In a nutshell, it extends the DataSet API with Input and OutputFormats to read and write savepoint or checkpoint data. Due to […]

Read More

Derivative Event Sourcing

Anna McDonald explains the concept of derivative event sourcing: If you happen to be the proud owner of a single order service, then you are all set to begin. But what if you have more than one order service? Something that tends to happen at companies that have been around for more than a sprint […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930