Training Data With Azure ML

Koos van Strien discusses training data sets and cross-validating results:

When choosing a train and testset, you’ll implicitly introduce a new bias: it could be that the model you just trained predicts well for this particular testset, when trained for this particular trainset. To reduce this bias, you could “cross-validate” your results.

Cross-validation (often abbreviated as just “cv”) splits the dataset into n folds. Each fold is used once as a testset, using all other folds together as a training set. So in our pizza example with 100 records, with 5 folds we will have 5 test runs:

This isn’t Azure ML-specific, and is good reading.

Related Posts

Building A Neural Network In R With Keras

Pablo Casas walks us through Keras on R: One of the key points in Deep Learning is to understand the dimensions of the vector, matrices and/or arrays that the model needs. I found that these are the types supported by Keras. In Python’s words, it is the shape of the array. To do a binary […]

Read More

Switching To Managed Disks In Azure

Chris Seferlis walks us through an easy method to convert unmanaged disks to managed disks in Azure: First off, why would you want a managed disk over an unmanaged one? Greater scalability due to much higher IOPs and storage limits. There’s no longer the need to add additional storage accounts when you’re adding disk space, […]

Read More


August 2016
« Jul Sep »