Press "Enter" to skip to content

Training Data With Azure ML

Koos van Strien discusses training data sets and cross-validating results:

When choosing a train and testset, you’ll implicitly introduce a new bias: it could be that the model you just trained predicts well for this particular testset, when trained for this particular trainset. To reduce this bias, you could “cross-validate” your results.

Cross-validation (often abbreviated as just “cv”) splits the dataset into n folds. Each fold is used once as a testset, using all other folds together as a training set. So in our pizza example with 100 records, with 5 folds we will have 5 test runs:

This isn’t Azure ML-specific, and is good reading.