Migrating Data To SQL Server Using Data Factory

Kevin Feasel

2016-08-25

Cloud, ETL

Ginger Grant moves data from Azure Blob Storage into Azure SQL Database using Data Factory:

There are instances where data resides in Azure Blob Storage and the data is needed in a SQL database. For example, if one ran a Machine Learning experiment in Data Factory, the results would be stored in Azure Blob storage, and for analysis purposes, it may make a lot more sense to move the data to SQL database. Moving data around in Data Factory, means writing JSON. In this example we will be using an Azure SQL DB, but it is not essential that the data be stored in Azure. An on-premises SQL Server could also be used, as long as a gateway was added for the connection, the other steps would be the same. There are five different Data Factory elements required to move data from an Azure blob to a database: a pipeline for the data, a data set containing the definition for the blob, a linked service for the blob, a data set containing a definition for the SQL Data, and a linked service to connect to the SQL database.

There’s a lot of JSON ahead.

Related Posts

Setting Up SparklyR In Azure

David Smith shows how you can spin up a Spark cluster in Azure and install SparklyR on top of it: The SparklyR package from RStudio provides a high-level interface to Spark from R. This means you can create R objects that point to data frames stored in the Spark cluster and apply some familiar R paradigms (like dplyr) […]

Read More

Comparing Data Lake Job Runs

Yanan Cai shows how to compare stats on different executions of a job: Troubleshooting issues in recurring job is a time-consuming task. It starts with searching through the Job Browser to find instances of a recurring job and identifying both baseline and anomalous performance. This is followed by multi-way comparisons between job instances to figure out what […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031