Getting Started With Azure ML

Koos van Strien gives a quick overview of Azure ML:

Before I started, I was already quite comfortable programming Python and did some R programming in the past. This turned out pretty handy, though not really needed to start off with – because starting with Azure ML, the data flow can be created much like BI specialists are used to in SSIS.

A good place to start for me was the Tutorial competition (Iris Petal Competition). It provides you with a pre-filled workspace with everything in place to train and test your first ML model:

I’d like to see Azure ML get more traction; I’m not optimistic that it will.

Related Posts

Anomaly Detection With Python

Robert Sheldon continues his SQL Server Machine Learning Series: As important as these concepts are to working Python and MLS, the purpose in covering them was meant only to provide you with a foundation for doing what’s really important in MLS, that is, using Python (or the R language) to analyze data and present the […]

Read More

Setting Up SparklyR In Azure

David Smith shows how you can spin up a Spark cluster in Azure and install SparklyR on top of it: The SparklyR package from RStudio provides a high-level interface to Spark from R. This means you can create R objects that point to data frames stored in the Spark cluster and apply some familiar R paradigms (like dplyr) […]

Read More


August 2016
« Jul Sep »