Data Access And Streaming

Kartik Paramasivam discusses data access problems and solutions within a streaming architecture:

Using a remote store: This is the traditional model for building applications. Here, when an application needs to process an event, it makes a remote call to a separate SQL or No-SQL database. In this model, write operations are always remote calls, but reads can be performed on a local cache in certain scenarios. There are a large number of applications at LinkedIn that fall into this category.

Another pattern is to use a remote cache (e.g., Couchbase) that is fronting a remote database (e.g., Oracle). If the remote cache is used primarily for reading adjunct data, then applications use an Oracle change capture stream (using Databus) to populate the remote cache.

This is a must-read if you’re looking at implementing a streaming architecture and need to do any kind of data enrichment.

Related Posts

Crossing The Streams With Kafka

Himani Arora shows how to join two Kafka streams together: KStream-KStream Join It is a sliding window join, that means, all tuples close to each other with regard to time are joined. Time here is the difference up to size of the window. These joins are always windowed joins because otherwise, the size of the internal state […]

Read More

Benchmarking Streaming Systems

Burak Yavuz shares a benchmark of Spark Streaming versus Flink and Kafka Streams: At Databricks, we used Databricks Notebooks and cluster management to set up a reproducible benchmarking harness that compares the performance of Apache Spark’s Structured Streaming, running on Databricks Unified Analytics Platform, against other open source streaming systems such as Apache Kafka Streams and Apache Flink. In particular, we used the following […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031