Reprocessing Kafka Stream Data

Matthias J Sax shows how to reprocess input data using Kafka Streams:

In this blog post we describe how to tell a Kafka Streams application to reprocess its input data from scratch. This is actually a very common situation when you are implementing stream processing applications in practice, and it might be required for a number of reasons, including but not limited to: during development and testing, when addressing bugs in production, when doing A/B testing of algorithms and campaigns, when giving demos to customers or internal stakeholders, and so on.

The quick answer is you can do this either manually (cumbersome and error-prone) or you can use the new application reset tool for Kafka Streams, which is an easy-to-use solution for the problem. The application reset tool is available starting with upcoming Confluent Platform 3.0.1 and Apache Kafka 0.10.0.1.

In the first part of this post we explain how to use the new application reset tool. In the second part we discuss what is required for a proper (manual) reset of a Kafka Streams application. This parts includes a deep dive into relevant Kafka Streams internals, namely internal topics, operator state, and offset commits. As you will see, these details make manually resetting an application a bit complex, hence the motivation to create an easy to use application reset tool.

Being able to reprocess streams is a critical part of the Kappa architecture, and this article is a nice overview of how to do that if you’re using Kafka Streams.

Related Posts

Stream-To-Stream Joins In Spark

Ayush Tiwari shows how to join a pair of streams in Apache Spark 2.3: In Spark 2.3, it added support for stream-stream joins, i.e, we can join two streaming Datasets/DataFrames and in this blog we are going to see how beautifully spark now give support for joining the two streaming dataframes. I this example, I […]

Read More

Spark: DataFrame To RDD For Data Cleansing

Gilad Moscovitch walks us through a common data cleansing problem with Spark data frames: A problem can arise when one of the inner fields of the json, has undesired non-json values in some of the records. For instance, an inner field might contains HTTP errors, that would be interpreted as a string, rather than as a […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031