Calling Azure ML Web Services Using Data Factory

Ginger Grant shows how to call an Azure Machine Learning web service from within Azure Data Factory:

The Linked Service for ML is going to need some information from the Web Service, the URL and the API key. Chances are neither of these have been committed to memory, instead open up Azure ML, go to Web Service and copy them. For the URL, look under the API Help Pagegrid, there are two options, Request/Response and Batch Execution. Clicking on Batch Execution loads a new page Batch Execution API Document. The URL can be found under Request URI. When copying the URL, you do not need to include any text after the word “jobs”. The rest of the URL, “?api-version=2.0”. Copying the entire URL will cause an error. Going back to the web Services page, The API Key appears on the dashboard section of Azure ML and there is a convenient button for copying it. Using these two pieces of information, it is now possible to create the Data Factory Linked Service to make the connection to the web service, which here I called AzureMLLinkedService

Read the whole thing.

Related Posts

NoSQL? No! MoSQL

Steve Jones points out a bit of a shift at Google: Google is doing more SQL, or at least shifting towards relational SQL databases as a way of storing data. At least, some of their engineers see this as a better way to store data for many problems. Since I’m a relational database advocate, I […]

Read More

Preventing Credential Compromise When Using AWS

Will Bengtston walks us through techniques Netflix uses to protect credentials in AWS: Scope In this post, we’ll discuss how to prevent or mitigate compromise of credentials due to certain classes of vulnerabilities such as Server Side Request Forgery (SSRF) and XML External Entity (XXE) injection. If an attacker has remote code execution (RCE) or […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031