Calling Azure ML Web Services Using Data Factory

Ginger Grant shows how to call an Azure Machine Learning web service from within Azure Data Factory:

The Linked Service for ML is going to need some information from the Web Service, the URL and the API key. Chances are neither of these have been committed to memory, instead open up Azure ML, go to Web Service and copy them. For the URL, look under the API Help Pagegrid, there are two options, Request/Response and Batch Execution. Clicking on Batch Execution loads a new page Batch Execution API Document. The URL can be found under Request URI. When copying the URL, you do not need to include any text after the word “jobs”. The rest of the URL, “?api-version=2.0”. Copying the entire URL will cause an error. Going back to the web Services page, The API Key appears on the dashboard section of Azure ML and there is a convenient button for copying it. Using these two pieces of information, it is now possible to create the Data Factory Linked Service to make the connection to the web service, which here I called AzureMLLinkedService

Read the whole thing.

Related Posts

Tips For Managing Business Logic

Tim Mitchell has a few tips for managing business logic, particularly when building ETL processes: First things first: let’s get on the same page with what is meant by business logic. When I refer to business logic (also commonly referred to as business rules), I’m talking about the processing rules that are used to transform an […]

Read More

Tuning xgboost Models In R

Gabriel Vasconcelos has a new series on tuning xgboost models: My favourite Boosting package is the xgboost, which will be used in all examples below. Before going to the data let’s talk about some of the parameters I believe to be the most important. These parameters mostly are used to control how much the model […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031