Flink: Streams Versus Batches

Kevin Jacobs has an article comparing Apache Flink to Spark Streaming:

The other type of data are data streams. Data streams can be visualized by water flowing from a tap to a sink. This process is not ending. The nice property of streams is that you can consume the stream while it is flowing. There is almost no latency involved for consuming a stream.

Apache Spark is fundamentally based on batches of data. By that, for all processing jobs at least some latency is introduced. Apache Flink on the other hand is fundamentally based on streams. Let’s take a look at some evidence for the difference in latency.

Read the whole thing.

Related Posts

It’s All ETL (Or ELT) In The End

Robin Moffatt notes that ETL (and ELT) doesn’t go away in a streaming world: In the past we used ETL techniques purely within the data-warehousing and analytic space. But, if one considers why and what ETL is doing, it is actually a lot more applicable as a broader concept. Extract: Data is available from a source system Transform: We […]

Read More

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031