Flink: Streams Versus Batches

Kevin Jacobs has an article comparing Apache Flink to Spark Streaming:

The other type of data are data streams. Data streams can be visualized by water flowing from a tap to a sink. This process is not ending. The nice property of streams is that you can consume the stream while it is flowing. There is almost no latency involved for consuming a stream.

Apache Spark is fundamentally based on batches of data. By that, for all processing jobs at least some latency is introduced. Apache Flink on the other hand is fundamentally based on streams. Let’s take a look at some evidence for the difference in latency.

Read the whole thing.

Related Posts

MRAppMaster Errors Running MapReduce Jobs

I have a post looking at potential causes when PolyBase MapReduce jobs are unable to find the MRAppMaster class: Let me tell you about one of my least favorite things I like to see in PolyBase: Error: Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster This error is not limited to PolyBase but is instead […]

Read More

Using the StreamSets Snowflake Destination

Dash Desai shows how you can use StreamSets to write data into SnowflakeDB: In particular, we’ll look at an example scenario that addresses Data Drift – where new information is added mid-stream and when that occurs the new table structure and new column values are created in Snowflake automatically. To illustrate, let’s take HTTP web server logs […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031