Explaining Yarn Container Memory Allocations

Kevin Feasel

2016-08-08

Hadoop

Skumar T explains container sizes in Yarn:

So jobs on yarn cluster runs in individual containers which is allocated by Node Manager which in turn gets permissions from Resource Manager.

So few configuration parameters of node manager those are important in context of jobs running in the containers.

–>yarn.nodemanager.resource.memory-mb  8192(value)

Amount of physical memory, in MB, that can be allocated for containers.

–>yarn.nodemanager.pmem-check-enabled  true(value)

Whether physical memory limits will be enforced for containers.

The bottom half of the article goes into an extended example.

Related Posts

It’s All ETL (Or ELT) In The End

Robin Moffatt notes that ETL (and ELT) doesn’t go away in a streaming world: In the past we used ETL techniques purely within the data-warehousing and analytic space. But, if one considers why and what ETL is doing, it is actually a lot more applicable as a broader concept. Extract: Data is available from a source system Transform: We […]

Read More

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031