Amazon Machine Learning

Ujjwal Ratan uses patient readmission data to demonstrate Amazon Machine Learning:

The Amazon ML endpoint created earlier can be invoked using an API call. This is very handy for building an application for end users who can interact with the ML model in real time.

Create a similar application and host it as a static website on Amazon S3. This feature of S3 allows you to host websites without any web servers and takes away the complexities of scaling hardware based on traffic routed to your application. The following is a screenshot from the application:

I think that Azure ML is still ahead of Amazon’s ML solution, but I’m happy to see the competition.

Related Posts

Building A Neural Network In R With Keras

Pablo Casas walks us through Keras on R: One of the key points in Deep Learning is to understand the dimensions of the vector, matrices and/or arrays that the model needs. I found that these are the types supported by Keras. In Python’s words, it is the shape of the array. To do a binary […]

Read More

Bayesian Neural Networks

Yoel Zeldes thinks about neural networks from a different perspective: The term logP(w), which represents our prior, acts as a regularization term. Choosing a Gaussian distribution with mean 0 as the prior, you’ll get the mathematical equivalence of L2 regularization. Now that we start thinking about neural networks as probabilistic creatures, we can let the fun […]

Read More


August 2016
« Jul Sep »