Amazon Machine Learning

Ujjwal Ratan uses patient readmission data to demonstrate Amazon Machine Learning:

The Amazon ML endpoint created earlier can be invoked using an API call. This is very handy for building an application for end users who can interact with the ML model in real time.

Create a similar application and host it as a static website on Amazon S3. This feature of S3 allows you to host websites without any web servers and takes away the complexities of scaling hardware based on traffic routed to your application. The following is a screenshot from the application:

I think that Azure ML is still ahead of Amazon’s ML solution, but I’m happy to see the competition.

Related Posts

Combining Keras With Apache MXNet

Lai Wei, et al, show how to build a neural network in Keras 2 using MXNet as the engine: Distributed training with Keras 2 and MXNet This article shows how to install Keras-MXNet and demonstrates how to train a CNN and an RNN. If you tried distributed training with other deep learning engines before, you […]

Read More

Tuning xgboost Models In R

Gabriel Vasconcelos has a new series on tuning xgboost models: My favourite Boosting package is the xgboost, which will be used in all examples below. Before going to the data let’s talk about some of the parameters I believe to be the most important. These parameters mostly are used to control how much the model […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031