Amazon Machine Learning

Ujjwal Ratan uses patient readmission data to demonstrate Amazon Machine Learning:

The Amazon ML endpoint created earlier can be invoked using an API call. This is very handy for building an application for end users who can interact with the ML model in real time.

Create a similar application and host it as a static website on Amazon S3. This feature of S3 allows you to host websites without any web servers and takes away the complexities of scaling hardware based on traffic routed to your application. The following is a screenshot from the application:

I think that Azure ML is still ahead of Amazon’s ML solution, but I’m happy to see the competition.

Related Posts

Measuring Semantic Relatedness

Sandipan Dey re-works a university assignment on semantic relatedness in Python: Let’s define the semantic relatedness of two WordNet nouns x and y as follows: A = set of synsets in which x appears B = set of synsets in which y appears distance(x, y) = length of shortest ancestral path of subsets A and B sca(x, y) = a shortest common ancestor of subsets A and B This is the notion of […]

Read More

Errors Using Native Prediction In SQL Server

Sacha Tomey walks us through a few potential issues when converting code which uses SQL Server Machine Learning Services’s sp_execute_external_script procedure to native PREDICT calls: Stumble One: Error occurred during execution of the builtin function 'PREDICT' with HRESULT 0x80004001. Model type is unsupported. Reason: Not all models are supported. At the time of writing, only […]

Read More


August 2016
« Jul Sep »