Latch Spinlocks

Ewald Cress discusses a “secret” spinlock within latches:

No matter how bad contention gets for normal spinlocks, at least we account for cycles spent spinning: this stuff gets exposed in sys.dm_os_spinlock_stats and can allow us to diagnose and quantify contention. However, spinning done on a latch’s spinlock gets no obviously visible accounting. As such, if we did somehow manage to accrue a large number of spins on a very hot latch, it wouldn’t be obvious that the time went into spinning. This is not to say of course that it is necessarily a common problem, just that it would be hard to prove one way or the other.

If I appear to be painting a bleak picture, I apologise. Given the importance of latches, especially buffer latches, one would assume that the SQL Server development teams would be on the constant lookout for opportunities to identify issues and mitigate against them. And this is exactly the kind of scenario where some bright spark comes up with the idea of superlatches.

Read the whole thing.

Related Posts

Nested Loops And Implicit Reordering

Dmitry Piliugin shows how the SQL Server optimizer can end up reordering data in a nested loops join to improve performance: The purpose is to minimize random access impact. If we perform an Index Seek (with a partial scan, probably) we read the entries in the index order, in our case, in the order of […]

Read More

What Read Committed Isolation Level Gets You

Paul Randal explains the answer, which is “not much”: The ‘weird’ behavior is that when the “Batch 2” select completes, after having been blocked by the “Batch 1” transaction, it doesn’t return all 1,000 rows (even though “Batch 1” has completed). Furthermore, depending on when the “Batch 2” select is started, during the 10-seconds that “Batch 1” […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031