Clustering With Spark

Konur Unyelioglu shows how to implement k-means and Guassian clustering techniques in Apache Spark using MLlib:

Clustering is the task of assigning entities into groups based on similarities among those entities. The goal is to construct clusters in such a way that entities in one cluster are more closely related, i.e. similar to each other than entities in other clusters. As opposed to classification problems where the goal is to learn based on examples, clustering involves learning based on observation. For this reason, it is a form of unsupervised learning task.

There are many different clustering algorithms and a central notion in all of those is the definition of ’similarity’ between the entities that are being grouped. Different clustering algorithms may have different ways of measuring the similarity. In many clustering algorithms, another common notion is the so-called cluster center, which is a basis to represent the cluster. For example, in K-means clustering algorithm, the cluster center is the arithmetic mean position of all the points in that cluster.

This is a fairly lengthy article but if you want to get into machine learning with Spark, it’s a good one.

Related Posts

Working With The Databricks API Via Powershell

Gerhard Brueckl has a Powershell module for interacting with Databricks, either Azure or AWS: As most of our deployments use PowerShell I wrote some cmdlets to easily work with the Databricks API in my scripts. These included managing clusters (create, start, stop, …), deploying content/notebooks, adding secrets, executing jobs/notebooks, etc. After some time I ended […]

Read More

Tuning Apache Spark Applications

Vidisha Gupta has a few tips for tuning Apache Spark programs: Data Serialization – Serialization plays an important role in increasing the performance of any application. Spark provides two serialization libraries – Java Serialization: By default, spark uses Java’s ObjectOutputStream framework which can work with any class that implements java.io.serializable. This serialization is flexible but slow and […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031