Writing Good Tests In R

Kevin Feasel

2016-07-08

R, Testing

Brian Rowe discusses testing strategy in R:

It’s not uncommon for tests to be written at the get-go and then forgotten about. Remember that as code changes or incorrect behavior is found, new tests need to be written or existing tests need to be modified. Possibly worse than having no tests is having a bunch of tests spitting out false positives. This is because humans are prone to habituation and desensitization. It’s easy to become habituated to false positives to the point where we no longer pay attention to them.

Temporarily disabling tests may be acceptable in the short term. A more strategic solution is to optimize your test writing. The easier it is to create and modify tests, the more likely they will be correct and continue to provide value. For my testing, I generally write code to automate a lot of wiring to verify results programmatically.

I started this article with almost no idea how to test R code.  I still don’t…but this article does help.  I recommend reading it if you want to write production-quality R code.

Related Posts

Building An Image Recognizer With R

David Smith has a post showing how to build an image recognizer with R and Microsoft’s Cognitive Services Library: The process of training an image recognition system requires LOTS of images — millions and millions of them. The process involves feeding those images into a deep neural network, and during that process the network generates […]

Read More

Checkpointing Code For Reproduction

David Smith tells an interesting story about a reproducibility problem with data analysis: Timo Grossenbacher, data journalist with Swiss Radio and TV in Zurich, had a bit of a surprise when he attempted to recreate the results of one of the R Markdown scripts published by SRF Data to accompany their data journalism story about vested interests of Swiss […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031