Getting Started With Spark

Kevin Feasel

2016-07-01

Spark

Denny Lee announces a new Spark intro guide:

We are proud to introduce the Getting Started with Apache Spark on Databricks Guide. This step-by-step guide illustrates how to leverage the Databricks’ platform to work with Apache Spark. Our just-in-time data platform simplifies common challenges when working with Spark: data integration, real-time experimentation, and robust deployment of production applications.

Databricks provides a simple, just-in-time data platform designed for data analysts, data scientists, and engineers. Using Databricks, this step-by-step guide helps you solve real-world Data Sciences and Data Engineering scenarios with Apache Spark. It will help you familiarize yourself with the Spark UI, learn how to create Spark jobs, load data and work with Datasets, get familiar with Spark’s DataFrames and Datasets API, run machine learning algorithms, and understand the basic concepts behind Spark Streaming.

If you are at all interested in distributed databases, Spark is a must-learn.

Related Posts

Last-Click Attribution With Databricks Delta

Caryl Yuhas and Denny Lee give us an example of building a last-click digital marketing attribution model with Databricks Delta: The first thing we will need to do is to establish the impression and conversion data streams.   The impression data stream provides us a real-time view of the attributes associated with those customers who were served the […]

Read More

Getting Started With Azure Databricks

David Peter Hansen has a quick walkthrough of Azure Databricks: RUN MACHINE LEARNING JOBS ON A SINGLE NODE A Databricks cluster has one driver node and one or more worker nodes. The Databricks runtime includes common used Python libraries, such as scikit-learn. However, they do not distribute their algorithms. Running a ML job only on the driver might not […]

Read More

Categories

July 2016
MTWTFSS
« Jun Aug »
 123
45678910
11121314151617
18192021222324
25262728293031