Troubleshooting R Installations

Kevin Feasel



Ginger Grant walks through how to fix a couple issues you might run into while installing SQL Server R Services:

If you look at the code from the interactive window, you will notice that the error occurred with trying to run rxSummary. In both cases I didn’t get the error when I changed the compute context to SQL Server from local, but when I tried to run a function which runs on the server. In both cases the R tools where installed prior to installing SQL Server 2016. The Open Source R tools install to C:\Program Files\R\R-3.3.0 (your version number may be higher). The Microsoft R Open installs to C:\Program Files\Microsoft\MRO\R-3.2.5. To use the libraries needed for the RevoScaleR libraries included in R Server, the version of Microsoft R required is Microsoft RRE, which is installed here C:\Program Files\Microsoft\MRO-for-RRE\8.0. Unfortunately, SQL Server 2016 shipped with version 8.0.3 not 8.0.0. If you are getting data and using a local compute context, you will have no problems. However, when you want to change your compute context to run on SQL Server, you will get an error.

While I received a different error on the server than my laptop, the reason for both messages was the same. Neither computer was running version of the R client tools. On the server I was able to fix the error without downloading a thing. After installing a stand-alone version of R Server from the SQL Server Installation Center, the error went away and I got results when trying to run rxSummary. Unfortunately, it was not possible for me to run R Server on my laptop, as R Server is disabled from within the Installation Center. I believe that is because I have SQL Server 2016 developer edition on a laptop, not on a server. I needed to do something else to make it work.

Click the link for the full story.

Related Posts

The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R: PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the […]

Read More

Tidy Data Is Normalized Data

I emphasize the link between a tidy dataframe and a normalized data structure: The kicker, as Wickham describes on pages 4-5, is that normalization is a critical part of tidying data.  Specifically, Wickham argues that tidy data should achieve third normal form. Now, in practice, Wickham argues, we tend to need to denormalize data because […]

Read More


June 2016
« May Jul »