Data Science Languages

David Crook walks through his data science workflow and discusses language choice:

So I’ve spent a while now looking at 3 competing languages and I did my best to give each one a fair shake. Those 3 languages were F#, Python and R. I have to say it was really close for a while because each language has its strengths and weaknesses. That said, I am moving forward with 2 languages and a very specific way I use each one. I wanted to outline this, because for me it has taken a very long time to learn all of the languages to the level that I have to discover this and I would hate for others to go through the same exercise.

Read on for his decision, as well as how you go from “here’s some raw data” to “here are some services to expose interesting results.”

Related Posts

Defining TF-IDF

Bruno Stecanella explains the concept behind TF-IDF: TF-IDF was invented for document search and information retrieval. It works by increasing proportionally to the number of times a word appears in a document, but is offset by the number of documents that contain the word. So, words that are common in every document, such as this, what, and if, rank […]

Read More

Sentiment Analysis with Python

Bruno Stecanella shows us how to use MonkeyLearn to perform sentiment analysis in Python: Sentiment analysis is a set of Natural Language Processing (NLP) techniques that takes a text (in more academic circles, a document) written in natural language and extracts the opinions present in the text. In a more practical sense, our objective here is to take a text […]

Read More

Categories

June 2016
MTWTFSS
« May Jul »
 12345
6789101112
13141516171819
20212223242526
27282930