Predictive Maintenance

David Smith shows off a predictive maintenance gallery for dealing with aircraft engines:

In each case, a number of different models are trained in R (decision forests, boosted decision trees, multinomial models, neural networks and poisson regression) and compared for performance; the best model is automatically selected for predictions.

On a related note, Microsoft recently teamed up with aircraft engine manufacturer Rolls-Royceto help airlines get the most out of their engines. Rolls-Royce is turning to Microsoft’s Azure cloud-based services — Stream Analytics, Machine Learning and Power BI — to make recommendations to airline executives on the most efficient way to use their engines in flight and on the ground. This short video gives an overview.

Check out the data set and play around a bit.

Related Posts

A Quick Keras Example

Shubham Dangare takes us through a quick example using Keras and TensorFlow in Python: Keras is a high-level neural networks API, written in Python and capable of running on top of Tensorflow, CNTK  or Theano. It was developed with a focus on enabling fast experimentation. In this blog, we are going to cover one small […]

Read More

Biases in Tree-Based Models

Nina Zumel looks at tree-based ensembling models like random forest and gradient boost and shows that they can be biased: In our previous article , we showed that generalized linear models are unbiased, or calibrated: they preserve the conditional expectations and rollups of the training data. A calibrated model is important in many applications, particularly when financial data […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031