Predictive Maintenance

David Smith shows off a predictive maintenance gallery for dealing with aircraft engines:

In each case, a number of different models are trained in R (decision forests, boosted decision trees, multinomial models, neural networks and poisson regression) and compared for performance; the best model is automatically selected for predictions.

On a related note, Microsoft recently teamed up with aircraft engine manufacturer Rolls-Royceto help airlines get the most out of their engines. Rolls-Royce is turning to Microsoft’s Azure cloud-based services — Stream Analytics, Machine Learning and Power BI — to make recommendations to airline executives on the most efficient way to use their engines in flight and on the ground. This short video gives an overview.

Check out the data set and play around a bit.

Related Posts

Defining Tidy Data

John Mount shares thoughts about the concept of tidy data: A question is: is such a data set “tidy”? The paper itself claims the above definitions are “Codd’s 3rd normal form.” So, no the above table is not “tidy” under that paper’s definition. The the winner’s date of birth is a fact about the winner […]

Read More

Visualizing Earthquake Data

Giorgio Garziano continues a series on analyzing earthquake data: This is the third part of our post series about the exploratory analysis of a publicly available dataset reporting earthquakes and similar events within a specific 30 days time span. In this post, we are going to show static, interactive and animated earthquakes maps of different flavors by […]

Read More


May 2016
« Apr Jun »