Using Python 3.4 With EMR And Spark

Bruno Faria shows how to use Python 3.4 with Spark on Amazon’s ElasticMapReduce:

An EMR 4.6 cluster running Spark 1.6.1 will still use Python 2.7 as the default interpreter. If you want to change this, you will need to set the environment variable: PYSPARK_PYTHON=python34. You can do this when you launch a cluster by using the configurations API and supplying the configuration shown in the snippet below:

I’m more of a SQL and Scala guy, but if you like Python and are on the Python 3 side of the divide, here’s a solution for you.

Related Posts

Joining Multiple Types Of Data With KSQL

Robin Moffatt has an example where he enriches streaming CSV data with information stored in MySQL: This is a continuous query that executes in the background until explicitly terminated by the user. In effect, these are stream processing applications, and all we need to create them is SQL! Here all we’ve done is an enrichment (joining two […]

Read More

Kafka Partitioning Strategies

Amy Boyle shares some thoughts on Kafka partitioning strategy: If you have enough load that you need more than a single instance of your application, you need to partition your data. The producer clients decide which topic partition data ends up in, but it’s what the consumer applications will do with that data that drives […]

Read More


May 2016
« Apr Jun »