Machine Learning Skepticism

Julia Evans gives reasons to tamp down expectations with machine learning:

When explaining what machine learning is, I’m giving the example of predicting the country someone lives in from their first name. So John might be American and Johannes might be German.

In this case, it’s really easy to imagine what data you might want to do a good job at this — just get the first names and current countries of every person in the world! Then count up which countries Julias live in (Canada? The US? Germany?), pick the most likely one, and you’re done!

This is a super simple modelling process, but I think it’s a good illustration — if you don’t include any data from China when training your computer to recognize names, it’s not going to get any Chinese names right!

Machine learning projects are like any other development projects, with more complex algorithms.  There’s no magic and there’s a lot of perspiration (hopefully figuratively rather than literally) involved in getting a program which behaves correctly.

Related Posts

When Image Classifiers Look At Unknown Objects

Pete Warden explains that image classifiers aren’t magic: As people, we’re used to being able to classify anything we see in the world around us, and we naturally expect machines to have the same ability. Most models are only trained to recognize a very limited set of objects though, such as the 1,000 categories of the […]

Read More

Building Recurrent Neural Networks Using TensorFlow

Ahmet Taspinar walks us through creating a recurrent neural network topology using TensorFlow: As we have also seen in the previous blog posts, our Neural Network consists of a tf.Graph() and a tf.Session(). The tf.Graph() contains all of the computational steps required for the Neural Network, and the tf.Session is used to execute these steps. The computational steps defined in the tf.Graph can be […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031