Monitoring MapR With ELK

Mathieu Dumoulin shows how to feed MapR metrics into ElasticSearch and monitor with Kibana:

There are several ways to keep the data updated: a cron job, a linux daemon running as a service, or a stream tool such as Streamsets.

The easiest way might be to run the task as a cron job with an interval of one to thirty seconds depending on monitoring needs. This may be suitable for a proof of concept or a small test cluster or even a production cluster. The main drawback of using a cron is that the control over the execution is limited to running the script and resources aren’t shared, meaning we are opening and closing a connection to Elasticsearch as well as doing the work to call the rest endpoint for each invocation.

Kibana makes for some pretty dashboards.

Related Posts

Databricks Runtime 5.2 Released

Nakul Jamadagni announces Databricks Runtime 5.2: Delta Time TravelTime Travel, released as an Experimental feature, adds the ability to query a snapshot of a table using a timestamp string or a version, using SQL syntax as well as DataFrameReader options for timestamp expressions.Sample codeSELECT count() FROM events TIMESTAMP AS OF timestamp_expressionSELECT count() FROM events VERSION AS OF version Time travel looks a bit like temporal tables in SQL Server.

Read More

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031