Deep Learning

Pete Warden argues that deep learning is not just a fad:

This kind of attribution of an adjective to a subject is something an accurate parser can do automatically. Rather than laboriously going through just a hundred examples, it’s easy to set up the Parser McParseface and run through millions of sentences. The parser isn’t perfect, but at 94% accuracy on one metric, it’s pretty close to humans who get 96%.

Even better, having the computer do the heavy lifting means that it’s possible to explore many other relationships in the data, to uncover all sorts of unknown statistical relationships in the language we use. There’s bound to be other words that are skewed in similar or opposite ways to ‘bossy’, and I’d love to know what they are!

Looks like one more time sink for me…  Check this out if you’re at all interested in parsers.

Related Posts

Native Math Libraries And Spark ML

Zuling Kang shares with us how we can use native math libraries in netlib-java to speed up certain machine learning algorithms in Apache Spark: Spark’s MLlib uses the Breeze linear algebra package, which depends on netlib-java for optimized numerical processing.  netlib-java is a wrapper for low-level BLAS, LAPACK, and ARPACK libraries. However, due to licensing issues with runtime proprietary binaries, neither the Cloudera distribution of […]

Read More

No-Code ML On Cloudera Data Science Workbench

Tim Spann has a post covering ML on the Cloudera Data Science Workbench: Using Cloudera Data Science Workbench with Apache NiFi, we can easily call functions within our deployed models from Apache NiFi as part of flows. I am working against CDSW on HDP (https://www.cloudera.com/documentation/data-science-workbench/latest/topics/cdsw_hdp.html),  but it will work for all CDSW regardless of install type.In my […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031