Deep Learning

Pete Warden argues that deep learning is not just a fad:

This kind of attribution of an adjective to a subject is something an accurate parser can do automatically. Rather than laboriously going through just a hundred examples, it’s easy to set up the Parser McParseface and run through millions of sentences. The parser isn’t perfect, but at 94% accuracy on one metric, it’s pretty close to humans who get 96%.

Even better, having the computer do the heavy lifting means that it’s possible to explore many other relationships in the data, to uncover all sorts of unknown statistical relationships in the language we use. There’s bound to be other words that are skewed in similar or opposite ways to ‘bossy’, and I’d love to know what they are!

Looks like one more time sink for me…  Check this out if you’re at all interested in parsers.

Related Posts

Sentiment Analysis with Python

Bruno Stecanella shows us how to use MonkeyLearn to perform sentiment analysis in Python: Sentiment analysis is a set of Natural Language Processing (NLP) techniques that takes a text (in more academic circles, a document) written in natural language and extracts the opinions present in the text. In a more practical sense, our objective here is to take a text […]

Read More

Scalable Anomaly Detection with Kafka and Cassandra

Paul Brebner wraps up a series on anomaly detection at scale: The complete machine for the biggest result (48 Cassandra nodes) has 574 cores in total.  This is a lot of cores! Managing the provisioning and monitoring of this sized system by hand would be an enormous effort. With the combination of the Instaclustr managed […]

Read More


May 2016
« Apr Jun »