HBase’s Failure To Catch On

Kevin Feasel

2016-05-09

Hadoop

Matt Asay has an interesting article on how HBase started as a big thing but has fizzled since:

Ex-Googler (and current Amazon Web Services employee) Tim Bray argues “there is a real cost to this continuous widening of the base of knowledge a developer has to have to remain relevant.” RedMonk analyst Stephen O’Grady takes this a step further: “It could be that we’re approaching the too-much-of-a-good-thing stage. In which case, the logical outcome will be a gradual slowing of fragmentation followed by gradual consolidation.”

In other words, niche data stores that do one thing really well are giving way to more generally applicable databases that can serve a broader range of enterprise needs.

The second part of Keep’s sentence above, however, spells out another reason HBase is struggling: It’s really hard to use.

I have a statement which is 90% serious and 10% joke:  a database product is truly mature once it supports SQL.  So what’s the answer for HBase?  The current attempt at an answer is Phoenix, which is…SQL for HBase.

Related Posts

Calculating YARN Utilization Metrics

Dmitry Tolpeko shows how you can calculate per-second cluster utilization measures from YARN’s resource manager logs: But even if you query YARN REST API every second it still can only provide a snapshot of the used YARN resources. It does not show which application allocates or releases containers, their memory and CPU capacity, in which […]

Read More

Spark Streaming DStreams

Manish Mishra explains the fundamental abstraction of Spark Streaming: Before going into details of the operations available on the DStream API, let us look at the input sources from which we can start a Stream. There are multiple ways in which we can get the inputs from e.g. Kafka, Flume, etc. Or simple Idle files. […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031