Architecting Semi-Structured Data Solutions

James Serra gives four architectural scenarios for handling large quantities of semi-structured data:

An evolution of the three previous scenarios that provides multiple options for the various technologies.  Data may be harmonized and analyzed in the data lake or moved out to a EDW when more quality and performance is needed, or when users simply want control.  ELT is usually used instead of ETL (see Difference between ETL and ELT).  The goal of this scenario is to support any future data needs no matter what the variety, volume, or velocity of the data.

Hub-and-spoke should be your ultimate goal.  See Why use a data lake? for more details on the various tools and technologies that can be used for the modern data warehouse.

Check it out for a high-level architectural view of contemporary warehousing choices.  I prefer having both systems in play:  the EDW answers known business questions and gives you back report information relatively quickly; whereas the Hadoop cluster allows you to do spelunking, data cleansing, and answer unanticipated business questions.

Related Posts

Databricks Runtime 5.2 Released

Nakul Jamadagni announces Databricks Runtime 5.2: Delta Time TravelTime Travel, released as an Experimental feature, adds the ability to query a snapshot of a table using a timestamp string or a version, using SQL syntax as well as DataFrameReader options for timestamp expressions.Sample codeSELECT count() FROM events TIMESTAMP AS OF timestamp_expressionSELECT count() FROM events VERSION AS OF version Time travel looks a bit like temporal tables in SQL Server.

Read More

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031