Architecting Semi-Structured Data Solutions

James Serra gives four architectural scenarios for handling large quantities of semi-structured data:

An evolution of the three previous scenarios that provides multiple options for the various technologies.  Data may be harmonized and analyzed in the data lake or moved out to a EDW when more quality and performance is needed, or when users simply want control.  ELT is usually used instead of ETL (see Difference between ETL and ELT).  The goal of this scenario is to support any future data needs no matter what the variety, volume, or velocity of the data.

Hub-and-spoke should be your ultimate goal.  See Why use a data lake? for more details on the various tools and technologies that can be used for the modern data warehouse.

Check it out for a high-level architectural view of contemporary warehousing choices.  I prefer having both systems in play:  the EDW answers known business questions and gives you back report information relatively quickly; whereas the Hadoop cluster allows you to do spelunking, data cleansing, and answer unanticipated business questions.

Related Posts

Security Improvements In Kafka And Confluent Platform

Vahid Fereydouny demonstrates a number of security improvements made to Apache Kafka 2.0 as well as Confluent Platform 5.0: Over the past several quarters, we have made major security enhancements to Confluent Platform, which have helped many of you safeguard your business-critical applications. With the latest release, we increased the robustness of our security feature […]

Read More

SparkSession Versus SparkContext

Abhishek Baranwal explains the differences between the SparkSession object and the SparkContext object when writing Spark code: Prior to spark 2.0, SparkContext was used as a channel to access all spark functionality. The spark driver program uses sparkContext to connect to the cluster through resource manager. SparkConf is required to create the spark context object, […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031