Architecting Semi-Structured Data Solutions

James Serra gives four architectural scenarios for handling large quantities of semi-structured data:

An evolution of the three previous scenarios that provides multiple options for the various technologies.  Data may be harmonized and analyzed in the data lake or moved out to a EDW when more quality and performance is needed, or when users simply want control.  ELT is usually used instead of ETL (see Difference between ETL and ELT).  The goal of this scenario is to support any future data needs no matter what the variety, volume, or velocity of the data.

Hub-and-spoke should be your ultimate goal.  See Why use a data lake? for more details on the various tools and technologies that can be used for the modern data warehouse.

Check it out for a high-level architectural view of contemporary warehousing choices.  I prefer having both systems in play:  the EDW answers known business questions and gives you back report information relatively quickly; whereas the Hadoop cluster allows you to do spelunking, data cleansing, and answer unanticipated business questions.

Related Posts

Enabling Exactly-Once Kafka Streams

Guozhang Wang wraps up his exactly-once series in Kafka: When restarting the application from the point of failure, we would then try to resume processing from the previously remembered position in the input Kafka topic, i.e. the committed offset. However, since the application was not able to commit the offset of the processed message A before crashing […]

Read More

Avro Schemas In Kafka

Stephane Maarek explains the value of using Apache Avro as a schema structure for your Kafka topics: Avro has support for primitive types ( int, string, long, bytes, etc…), complex types (enum, arrays, unions, optionals), logical types (dates, timestamp-millis, decimal), and data record (name and namespace). All the types you’ll ever need. Avro has support for embedded documentation. Although documentation is optional, in my workflow I […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031