Data Lakes

Jen Stirrup has a great primer on data lakes and factors to consider before you jump into the idea:

The organization will need to take a step back to understand better their existing status. Are they just starting out? Are other departments which are doing the same thing, perhaps in the local organization or somewhere else in the world? Once the organization understands their state better, they can start to broadly work out the strategy that the Data Lake is intended to provide.

As part of this understanding, the objective of the Data Lake will need to be identified. Is it for data science? Or, for example, is the Data Lake simply to store data in a holding pattern for data discovery? Identifying the objective will help align the vision and the goals, and set the scene for communication to move forward.

I would like to popularize the term Data Swamp for “that place you store a whole bunch of data of dubious origin and value.”  It’s the place that you promise management of course you can get the data back…as long as they never actually ask for it or are okay with reading terabytes of flat files from backup tapes.  The Data Swamp is the Aristotelian counterpart to the Data Lake, Goofus to its Gallant.  It will also, to my estimate, be the more common version.

Related Posts

Avoid Scalar Functions In Computed Columns

Daniel Hutmacher shows why you should not include scalar functions inside computed column definitions: Scalar functions can be a real headache when you’re performance tuning. For one, they don’t parallelize. In fact, if you use a scalar function in a computed column, it will prevent any query that uses that table from going parallel – even if you […]

Read More

Azure And The Kappa Architecture

Jared Zagelbaum describes the Kappa architecture and points out how there’s limited built-in support in Azure for it: You can’t support kappa architecture using native cloud services. Cloud providers, including Azure, didn’t design streaming services with kappa in mind. The cost of running streams with TTL greater than 24 hours is more expensive, and generally, […]

Read More

Categories

April 2016
MTWTFSS
« Mar May »
 123
45678910
11121314151617
18192021222324
252627282930