Linear Regression In Azure ML

Ginger Grant gives a brief discussion of linear regression:

There are two types of indicators for linear correlation, positive and negative as shown on the following charts. The Y axis represents Grades, and the x axis is changed to show positive and negative correlation of the amount of X on grades. When X is the amount of study hours, there is a positive correlation and the line goes up. When X is changed to watching cat videos, there is a negative correlation. If you can’t draw a line around the points there is no correlation. If I were to create a graph where X indicated the quantity of the bags of Cheese Doodles consumed on grades, it would not be possible to draw a straight line, where the data points cluster around it. Since this is Line-ar regression, if that line doesn’t exist there is no correlation. Knowing there is no correlation is also useful.

Simple linear regression is a powerful tool and gets you to “good enough” more frequently than you’d think.

Related Posts

Picking A Python IDE

Kevin Jacobs reviews a few Python IDEs from the perspective of a data scientist: Ladies and gentlemens, this is one of the most perfect IDEs for editing your Python code! At least in my opinion. Jupyter notebook is a web based code editor and can quickly generate visualizations. You can mix up code and text […]

Read More

Handling Imbalanced Data

Tom Fawcett shows us how to handle a tricky classification problem: The primary problem is that these classes are imbalanced: the red points are greatly outnumbered by the blue. Research on imbalanced classes often considers imbalanced to mean a minority class of 10% to 20%. In reality, datasets can get far more imbalanced than this. […]

Read More

Categories

April 2016
MTWTFSS
« Mar May »
 123
45678910
11121314151617
18192021222324
252627282930