Envisioning Neural Nets As Org Charts

Maiia Bakhova describes the layout of a neural net as similar to a chain of command within an organization:

We can observe a lot of in common with a corporation chain of command. As we see middle managers are hidden layers which do the balk of the job.  We have the similar information flow and processing which is analogous to forward propagation and backward propagation.
What is left now is to explain that  dealing with sigmoid function at each node is too costly so it mostly reserved for CEO level.

That’s a metaphor I hadn’t heard before.

Related Posts

Multiple Data Sets In External Scripts

Tomaz Kastrun shows a workaround to the “one data set” limit in sp_execute_external_script: Some of the  arguments of the procedure sp_execute_external_script are enumerated. This is valid for the inputting dataset and as the name of argument @input_data_1 suggests, one can easily (and this is valid doubt) think, there can also be @input_data_2 argument, and so on. Unfortunately, this is […]

Read More

Neural Networks From Scratch

Ilia Karmanov explains neural nets and shows how to build one in R: Hence, my motivation for this post is two-fold: Understanding (by writing from scratch) the leaky abstractions behind neural-networks dramatically shifted my focus to elements whose importance I initially overlooked. If my model is not learning I have a better idea of what […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930