ML Algorithm Cheat Sheet

Hui Li has a quick cheat sheet on which algorithms might be useful in a particular situation:

A typical question asked by a beginner, when facing a wide variety of machine learning algorithms, is “which algorithm should I use?” The answer to the question varies depending on many factors, including:

  • The size, quality, and nature of data.
  • The available computational time.
  • The urgency of the task.
  • What you want to do with the data.

Even an experienced data scientist cannot tell which algorithm will perform the best before trying different algorithms. We are not advocating a one and done approach, but we do hope to provide some guidance on which algorithms to try first depending on some clear factors.

Hui then goes into detail on each. h/t Vincent Granville

Related Posts

Multiple Data Sets In External Scripts

Tomaz Kastrun shows a workaround to the “one data set” limit in sp_execute_external_script: Some of the  arguments of the procedure sp_execute_external_script are enumerated. This is valid for the inputting dataset and as the name of argument @input_data_1 suggests, one can easily (and this is valid doubt) think, there can also be @input_data_2 argument, and so on. Unfortunately, this is […]

Read More

Random Forests In R

Anish Sing Walia explains the basics of random forests and provides sample code in R: Random Forests are similar to a famous Ensemble technique called Bagging but have a different tweak in it. In Random Forests the idea is to decorrelate the several trees which are generated on the different bootstrapped samples from training Data.And […]

Read More