Data Science Resources

Steph Locke has some resources if you are interested in getting started with data science:

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data is written by Hadley Wickham and Garett Grolemund. You can buy it and you can also access it online.

If you’re interested in learning to actually start doing data science as a practitioner, this book is a very accessible introduction to programming.

Starting gently, this book doesn’t teach you much about the use of R from a general programming perspective. It takes a very task oriented approach and teaches you R as you go along.

This book doesn’t cover the breadth and depth of data science in R, but it gives you a strong foundation in the coding skills you need and gives you a sense of the of the process you’ll go through.

It’s a good starting set of links.

Related Posts

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Analysis Of A Failed Project

Eugene Meidinger looks back at a big project which fell apart: So the first issue was that the software was built in-house by another company in the same industry. Imagine, for example, if a large bakery had created an ERP system and another large bakery wanted to move to that system. Sounds great, right? Well, […]

Read More