Data Science Languages

David Crook walks through his data science workflow and discusses language choice:

So I’ve spent a while now looking at 3 competing languages and I did my best to give each one a fair shake. Those 3 languages were F#, Python and R. I have to say it was really close for a while because each language has its strengths and weaknesses. That said, I am moving forward with 2 languages and a very specific way I use each one. I wanted to outline this, because for me it has taken a very long time to learn all of the languages to the level that I have to discover this and I would hate for others to go through the same exercise.

Read on for his decision, as well as how you go from “here’s some raw data” to “here are some services to expose interesting results.”

Related Posts

Linear Prediction Confidence Region Flare-Out

John Cook explains why the confidence region of a tracked object flares out instead of looking conical (or some other shape): Suppose you’re tracking some object based on its initial position x0 and initial velocity v0. The initial position and initial velocity are estimated from normal distributions with standard deviations σx and σv. (To keep […]

Read More

Bayesian Average

Jelte Hoekstra has a fun post applying the Bayesian average to board game ratings: Maybe you want to explore the best boardgames but instead you find the top 100 filled with 10/10 scores. Experience many such false positives and you will lose faith in the rating system. Let’s be clear this isn’t exactly incidental either: […]

Read More

Categories

June 2016
MTWTFSS
« May Jul »
 12345
6789101112
13141516171819
20212223242526
27282930