Press "Enter" to skip to content

Category: Visualization

Retention Analytics

Patrick LeBlanc shows collegiate retention data using Power BI:

Partnering with Stetson University, I am happy to share the first of many Power BI Higher Education Analytics solutions. This solution shows student persistence, retention, and graduation patterns, leveraging BANNER as the data source. Year-over-over retention and graduation rates can be filtered to allow deeper examination of trends at the college and major level. Additional views, including retention and graduation rate tables by major and ethnicity, are included within the report solution.  The entire solution with documentation can be downloaded here.

The following image shows the first view within the report: overall persistence, retention, and graduation rates by year of first time student cohort. This report allows users to quickly show institutional retention and graduation trends across time, with the option to filter the view to show only specific colleges and/or majors.

This also serves as a Power BI demo, in case you’re hurting for good examples.

Comments closed

Power BI Custom Visuals Course

Devin Knight is starting a free course on custom visuals in Power BI:

Welcome to an exciting new FREE class that I am launching today!  Over the next year (that’s right year!) I will be releasing one module a week detailing how to work with all of the Power BI visuals available in the Custom Visuals Gallery.  You might ask why am I doing this?  Well The Microsoft Power BI team and the Power BI Community, through the Custom Visuals Gallery, have expanded the data visualization capabilities of Power BI drastically but unfortunately has provided little and in some cases no direction on how to use these the new features.  These Custom Visuals are designed by Microsoft on occasion but more often then not the Power BI Community has put in a lot of hard work to provide these great new features for everyone to use.  My thought is if the Power BI Community is willing to design and publish these without asking individuals for payment then I would love to provide training on these features to you for free as well.

This sounds like a nice course.  Good on Devin for doing this.

Comments closed

Box And Whisker Plots

Slava Murygin shows how to create a box and whisker plot in SSMS using spatial data types:

If you have no idea what Box-and-Whisker Plot is, please visit following link: http://www.wellbeingatschool.org.nz/information-sheet/understanding-and-interpreting-box-plots

At first, I will show how to do it based on AdventureWorks database in SQL Server 2014.

We will analyze amounts of Individual lines of Sales Orders within each month.

The first step is to create a Data Set to process.  That Data Set will contain a Month, Single Line amount and order number of that record within a month.

This is really cool…but I wonder if it wouldn’t be better to do this in R, where it’d take a lot less code.  If you can’t reach out to R, though, this is a good way of visualizing results.

Comments closed

Ambari With Grafana

Sid Wagle shows Grafana, a dashboard builder for Ambari:

Grafana provides a powerful and customizable dashboard builder for visualizing time series data. Ambari installs Grafana v2.6 as a Master Component of AMS and adds a datasource for AMS to Grafana. The dashboard builder is supported through a Metadata API in AMS that allows easy discovery of metrics, applications and hosts which are the key components that formalize an API call to AMS. There has been significant work put into creating templated dashboards for Hadoop ecosystem services tailored towards analyzing issues and performance bottlenecks on the Hadoop cluster. The following is an image of the dashboard builder highlighting the metric name drop down with type ahead and auto complete along with options to apply aggregate functions as needed based on whether the metric is a GAUGE or a COUNTER.

This is the beginning of a good visualization system for Hadoop metrics.

Comments closed

Dashboard Design

Melissa Yu explains how people look at dashboards:

Dashboards can be used to communicate a dense collection of information efficiently on a single canvas. Your audience has a limited amount of time to monitor key metrics to get a quick status and identify anything that needs attention. The attention span of the average human has gone from about 12 seconds in 2000 (when mobile phones became mainstream) to about 8 seconds today – a second less than a goldfish – according to a 2015 study.

Following data visualization design principles is key to making your dashboard easily consumable. A poorly designed dashboard can make your eyes jump all over the screen. While it won’t give you much insight, it may cause a headache. In the Western world, we read from top left to right, then zig-zag down left and scroll right again (in a Z-pattern). Understanding where the audience’s eyes will start and travel next allows you to guide them through your dashboard.

Check the link for more details.

Comments closed

Graphing With Microsoft R Open

David Smith points out a free e-book on creating effective graphs with Microsoft R Open:

The examples were done using Microsoft R Open, but since it’s 100% compatible with R the code works with any relatively recent R version.

Naomi and Joyce presented several examples from their e-book in a recent webinar (presented by Microsoft), and fielded lots of interesting questions from the audience. If you’d like to see the recorded webinar and also receive a copy of the slides and the e-book, follow the link below to register to receive the materials via email.

The book is free, the code is available on GitHub.  What more could you ask for?

Comments closed

Custom Power BI Visuals

Rob Farley looks into custom Power BI visuals:

I hadn’t explored much in the way of custom visuals in Power BI until a while back, even though I was very much aware of the competition that was held in September. It had been on my list to explore some of what was possible. And this month, the T-SQL Tuesday topic (hosted by Wendy Pastrick@wendy_dance) was to learn something new and to blog about it. So it seemed a good idea to learn how to make my own custom visualisation!

Now, creativity isn’t exactly my thing. I find it really hard to write songs, for example. I know how to do it – but I quickly become self-critical and get stuck. Writing is easier, because it feels less ‘creative’, and appeals more to the teacher / preacher in me (and I know that takes creativity, especially if you’ve ever seen me present, but it’s different). So sitting down and coming up with a new way of visualising data wasn’t something I was going to do.

For more info, check out more info on creating visuals and using R to visualize data in Power BI.

Comments closed

Trending And Smoothing

Matt Allington looks at trending and smoothing data in Power BI:

You can download the workbook here if you want to take a look, or simply look at the embedded version I have pinned at the bottom of the post.

Notice the spikes in sales in different months in the chart above?  These spikes are very common in sales data, and in my experience they can be even more prevalent in weekly sales data.  These spikes make it difficult to analyse trends in the data.  You could put a trend line into the chart (thanks to the April update do Power BI), but a standard linear trend line is too simplistic to really see what is happening in your data, particularly if there are seasonal changes.

One good way to look at the trends in your data is to add an Average Monthly Sales Rolling Quarter trend line to the chart.  You simply take the total sales of the last 3 months and then divide by 3.  If you were doing a weekly trend, take the last 13 weeks and divide by 13.  When you overlay this Avg Monthly Sales RQ line on the original chart, it looks like this.

This is a fairly advanced topic, but it’s also the kind of thing which separates good reporting from great reporting.

Comments closed

Real-Time Mapping

Alan Eng shows off some open source tools to visualize data on a map in real time:

Beautiful data visualizations reveal stories that numbers just cannot simply tell. Using visualizations, we can get a sense of scale, speed, direction, and trend of the data. Additionally, we can draw the attention of the audience – the key to any successful presentation – in a way that’s impossible with tabulations. While a tabular view of new online signups is informative for tracking, a dynamic map would provide a more captivating view and reveal dimensions that a table cannot.

Hence, I worked on a map visualization that depicts signups in real time. In this post we will walk through the tools used to construct this map and discuss the technology that allows the frontend to listen and to receive data from the backend. The code should be sufficient for the readers to build their own flavor of the real-time map visualization. Note that I’m not a front-end developer. I did this for the sake of curiosity!

We’ve seen Power BI achieve the same goals (e.g., here and here), but this lets you write some custom code to fit into applications.  On the database side, we tend not to think so much about good internal monitors.  We buy monitoring tools for our databases, but those don’t tell us if our applications are healthy.

Comments closed

Power BI: Dynamic Chart Titles

Chris Webb shows how to generate dynamic chart titles using Power BI:

But what about if you want the chart title to change depending on what is selected? For example, you might be using slicers or filters to allow a user to choose which days of the week they want to see data for. In that situation you might want to add a title that shows which days of the week have actually been selected; this would be particularly important if the report uses filters, or if the report is going to be printed. Unfortunately the built in Title Text property can’t be used to display dynamic values but in this blog post I’ll show you how to solve this problem using DAX.

The solution isn’t trivial, but it is cool.

Comments closed