Press "Enter" to skip to content

Category: Visualization

One Chart at a Time

Meagan Longoria has contributed to a series:

Jon Schwabish over at PolicyViz has created great initiative called the One Chart at a Time Video Series. It’s an effort to expand readers’ graphic literacy through short videos explaining how to read and use different charts. Each video is from a different person in the data visualization industry. Participants include people I admire such as Andy KirkBen Jones, and Cole Nussbaumer Knaflic. Jon releases a new video each weekday. The initiative started January 11 and will continue through mid-March.

Click through for Meagan’s contribution on waterfall charts.

Comments closed

Driving Action with Graphs

Elizabeth Ricks completes a series on designing visuals. Question 4 involves the audience:

When communicating with data, always consider what broader purpose it serves. Too often, we don’t pause and think about the context (understandable in the real-world maelstrom of deadlines, constraints and organizational politics!). Rather, we force the visuals that we used to analyze the data upon our audience, hoping they’ll come to the same conclusion. 

Question 5 looks at the text on a visual:

In data visualization, words can be more powerful than we realize. When designing graphs, the non-negotiable text includes explicit axes labels, descriptive chart titles, supporting annotations, and footnotes with relevant methodology and assumptions. Never assume it’s apparent what’s being shown—make it your default to include this important context so your audience doesn’t have to guess what they’re seeing. 

Be sure to read both.

Comments closed

The Benefit of Multiple Visuals

Elizabeth Ricks continues a series on data visualization techniques:

Data can be visualized many different ways, creating an often daunting task to select the best chart to use. We also sometimes complicate our audience’s experience, packing too much information into a single graph, in the hopes that it will answer every possible question. Instead of making the Swiss Army Knife of charts, we might instead create different views of the same data, examine what each iteration allows a viewer to see, and then decide which version(s) to share with our audience. 

Read on for more.

Comments closed

Using Color Intentionally in Visuals

Elizabeth Ricks continues a series:

To create more impactful explanatory visuals, develop the habit of using color in a purposeful way. When applied thoughtfully, color is arguably the most important decision you make when focusing your audience’s attention where you want it. 

One way to start is by overriding the default color palette of your data viz tool and start with nothing emphasized.

Using color for emphasis is important. Color is a pre-attentive attribute, so it’s great to take advantage of that powerful implicit signal. And that means not using lots of different colors.

Comments closed

Improving a Graph

Elizabeth Ricks has started a series on improving a particular visual:

I empathize with the plight of this anonymous creator. In previous roles, I frequently created visuals that looked like this, and was left frustrated when requests came back for “more data.” I slowly came to realize that I was assigning my audience the tedious task of figuring out for themselves what the takeaways were. My visuals should have been highlighting the interesting things to those seeing them for the first time. The five questions we’ll be discussing in this series will help us to do just that.

The first question in the series is, “What elements can I eliminate?” I think that’s a really good idea—with data visualization, less is more.

Comments closed

Smoothing and its Inherent Risks

John Mount would like you to take care when using smoothers:

Here is a quick data-scientist / data-analyst question: what is the overall trend or shape in the following noisy data? For our specific example: How do we relate value as a noisy function (or relation) of m? This example arose in producing our tutorial “The Nature of Overfitting”.

One would think this would be safe and easy to asses in R using ggplot2::geom_smooth(), but now we are not so sure.

Here’s a quick summary of my general philosophy: the data are more interesting than a smoothed line. I’m okay putting in a smoothed line to help a reader make sense of a trend, but I wouldn’t want to have a plot with just the smoothed line. Read the whole thing from John to get well beyond my rule of thumb.

Comments closed

Visualization and the Value of Expectations

Alex Velez thinks about violating expectations in visuals:

This isn’t to say we should never deviate from normal graphing conventions, but we should have a good reason for doing so—a reason that makes up for any unintended consequences. 

What other design decisions might also take our audience by surprise—going against normal graphing expectations? I’ll outline a few. 

Click through for examples. One thing not explicitly brought up is that we follow conventions to reduce the amount of thought needed to understand something. For circumstances in which there’s a major benefit, you might want to run that risk. Also, there’s an argument in here that, at some point, it’s better to have something radically different than marginally different.

Comments closed

All About Dot Plots

Cole Nussbaumer Knaflic talks about one of my favorite plot types:

The term “dot plot” can be used for any graph that is encoding data in a dot or small circle. There are a few common types that I’ll focus on here. If you’ve ever asked yourself—What is a dot plot? How do I interpret a dot plot? When should I use a dot plot? or What are pros and cons of dot plots?—you’ll find the answers in this post. I’ll also share some tips on creating them and where to find examples that will inform and inspire.

Read the whole thing.

Comments closed

Waterfall Visuals

Mike Cisneros takes us through cases when waterfall charts are useful:

In our workshops, we often put a grid of a dozen charts up on the screen, and say to the participants, “Most of the charts you’ll need to communicate effectively in business are right here on the screen. 99% of the time, one of the visuals you see here will get your message across effectively. And as you can see there aren’t any really unusual charts here. You’ve probably seen all of these before.” 

If, at this point, somebody in the room says, “Actually, I’ve never heard of a ______ chart before,” you can almost always fill in the blank with the word “waterfall.”

Waterfall charts are really useful in a few scenarios, but I see them get misused far too frequently.

Comments closed

Combining Two Survey Questions into a Graph

Stephanie Evergreen solves a challenge:

You’ve asked employees to rate a bunch of different aspects of their job. You want to know if they think that aspect is important AND how satisfied they are with that aspect of their job. So, naturally, you make two individual questions with response options like Not at all Important to Very Important and Not at all Satisfied to Very Satisfied. I would probably do the same thing.

But then you’ve got to show the data and, importantly, how those two variables – Importance and Satisfaction – relate to each other.

Click through for two methods of visualizing the results.

Comments closed