Press "Enter" to skip to content

Category: Spark

Databricks Runtime 5.2 Released

Nakul Jamadagni announces Databricks Runtime 5.2:

Delta Time Travel
Time Travel, released as an Experimental feature, adds the ability to query a snapshot of a table using a timestamp string or a version, using SQL syntax as well as DataFrameReader options for timestamp expressions.
Sample code
SELECT count(FROM events TIMESTAMP AS OF timestamp_expression
SELECT count(
FROM events VERSION AS OF version

Time travel looks a bit like temporal tables in SQL Server.

Comments closed

Native Math Libraries And Spark ML

Zuling Kang shares with us how we can use native math libraries in netlib-java to speed up certain machine learning algorithms in Apache Spark:

Spark’s MLlib uses the Breeze linear algebra package, which depends on netlib-java for optimized numerical processing.  netlib-java is a wrapper for low-level BLASLAPACK, and ARPACK libraries. However, due to licensing issues with runtime proprietary binaries, neither the Cloudera distribution of Spark nor the community version of Apache Spark includes the netlib-java native proxies by default. So without manual configuration, netlib-java only uses the F2J library, a Java-based math library that is translated from Fortran77 reference source code.

To check whether you are using native math libraries in Spark ML or the Java-based F2J, use the Spark shell to load and print the implementation library of netlib-java. The following commands return information on the BLAS library and include that it is using F2J in the line, “com.github.fommil.netlib.F2jBLAS,” which is highlighted below:

In the examples here, you can get about a 2x difference using the native math libraries versus without, so although that’s not an order of magnitude difference, it’s still nothing to sneeze at.

Comments closed

Overwriting Data In Use With Databricks

Piotr Starczynski shows us how we can read data from a table, transform it, and write it back to the same file:

Recently I have reached interesting problem in Databricks Non delta. I tried to read data from the the table (table on the top of file) slightly transform it and write it back to the same location that i have been reading from. Attempt to execute code like that would manifest with exception:“org.apache.spark.sql.AnalysisException: Cannot insert overwrite into table that is also being read from”

The lets try to answer the question How to write into a table(dataframe) that we are reading from as this might be a common use case?

This problem is trivial but it is very confusing, if we do not understand how queries are processed in spark.

Click through for the answer. I’m a little squeamish about doing this because my expectation is for data to flow from one source to another source; feeding the data back to the initial source feels strange, like running a load of clothes through the washer and dryer and then dumping them back into the hamper with the remainder of the dirty clothes.

Comments closed

Azure Data Factory Data Flows

Joost van Rossum takes a look at data flows in Azure Data Factory:

2) Create Databricks Service
Yes you are reading this correctly. Under the hood Data Factory is using Databricks to execute the Data flows, but don’t worry you don’t have to write code.
Create a Databricks Service and choose the right region. This should be the same as your storage region to prevent high data movement costs. As Pricing Tier you can use Standard for this introduction. Creating the service it self doesn’t cost anything.

Joost shows the work you have to do to build out a data flow. This has been a big hole in ADF—yeah, ADF seems more like an ELT tool than an ETL tool but even within that space, there are times when you need to do a bit more than pump-and-dump.

Comments closed

Spark And Splitting DataFrames

Giovanni Lanzani explains that one technique to split a data frame doesn’t quite work as expected:

Recently I was delivering a Spark course. One of the exercises asked the students to split a Spark DataFrame in two, non-overlapping, parts.

One of the students came up with a creative way to do so.

He started by adding a monotonically increasing ID column to the DataFrame. Spark has a built-in function for this, monotonically_increasing_id — you can find how to use it in the docs.

Read on to see how this didn’t quite work right, why it didn’t work as expected, and one alternative.

Comments closed

A Functional Approach To PySpark

Tristan Robinson shows us how we can implement a transform function which makes Python code look a little bit more functional:

After a small bit of research I discovered the concept of monkey patching (modifying a program to extend its local execution) the DataFrame object to include a transform function. This function is missing from PySpark but does exist as part of the Scala language already.

The following code can be used to achieve this, and can be stored in a generic wrapper functions notebook to separate it out from your main code. This can then be called to import the functions whenever you need them.

Things which make Python more of a functional language are fine by me. Even though I’d rather use Scala.

Comments closed

AMD vs Intel CPUs For Data Processing Jobs

Hariharan Iyer and Abhishek Srivastava run some tests against AWS’s new AMD-powered EC2 instances:

Our summary findings from TPCDS benchmarks are as follows:
– TPCDS queries are not as sensitive to local disk performance (and hence to EBS volume sizes)
– r5 (Intel) instances are consistently faster than r5a (AMD) instances. However, the speedup depends on the engine and the speedup for r5 (Intel) is lower for Spark (10%) than for Hive (25%).
– r5 instances are also either cheaper (by about 10% for Hive) or the same cost (for Spark)

At least for Hadoop and Spark work, Intel CPUs are a bit better, but there is some nuance in the story so check it out.

Comments closed

Azure Databricks And Active Directory

Tristan Robinson wraps up a two-parter on Azure Databricks security:

With the addition of Databricks runtime 5.1 which was released December 2018, comes the ability to use Azure AD credential pass-through. This is a huge step forward since there is no longer a need to control user permissions through Databricks Groups / Bash and then assigning these groups access to secrets to access Data Lake at runtime. As mentioned previously – with the lack of support for AAD within Databricks currently, ACL activities were done on an individual basis which was not ideal. By using this feature, you can now pass the authentication onto Data Lake, and as we know one of the advantages of Data Lake is the tight integration into Active Directory so this simplifies things. Its worth noting that this feature is currently in public preview but having tested it thoroughly, am happy with the implementation/limitations. The feature also requires a premium workspace and only works with high concurrency clusters – both of which you’d expect to use in this scenario.

It looks like this is the way to go forward with securing Azure Databricks. Read the whole thing.

Comments closed

Azure Databricks Security

Tristan Robinson looks at what’s currently available in terms of security on Azure Databricks:

You’ll notice that as part of this I’m retrieving the secrets/GUIDS I need for the connection from somewhere else – namely the Databricks-backed secrets store. This avoids exposing those secrets in plain text in your notebook – again this would not be ideal. The secret access is then based on an ACL (access control list) so I can only connect to Data Lake if I’m granted access into the secrets. While it is also possible to connect Databricks up to the Azure Key Vault and use this for secrets store instead, when I tried to configure this I was denied based on permissions. After research I was unable to overcome the issue. This would be more ideal to use but unfortunately there is limited support currently and the fact the error message contained spelling mistakes suggests to me the functionality is not yet mature.

To be charitable, there appears to be room for implementation improvement.

Comments closed

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem:

H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, however, the latter follows the conventions of Apache Spark’s MLlib library and allows you to build machine learning pipelines that include MLlib transformers. We will focus on the latter API in this post.

H2OAutoML supports classification and regression. The ML models built and tuned by H2OAutoML include Random Forests, Gradient Boosting Machines, Deep Neural Nets, Generalized Linear Models, and Stacked Ensembles.

The post only has a few lines of code but there are a lot of working parts under the surface.

Comments closed