Press "Enter" to skip to content

Category: Query Tuning

Indexing for Sorted Data

Erik Darling digs into indexes and sorts:

Without things sorted the way you’re looking for them, it’s a lot like hitting shuffle until you get to the song you want. Who knows when you’ll find it, or how many clicks it will take to get there.

The longer your playlist is, well, you get the idea. And people get all excited about Skip Scans. Sheesh.

Anyway, let’s look at poor optimizer choices, and save the poor playlist choices for another day.

Click through for an interesting problem and solution.

Comments closed

Avoiding Time Intelligence DAX Functions in DirectQuery Mode

Marco Russo and Alberto Ferrari skip the slow stuff:

Calculations that use the DAX time intelligence functions mostly retrieve data at the day level, performing the required aggregations in the formula engine. By avoiding time intelligence DAX functions, you can force DAX to produce more optimized queries for your specific calculations.

DirectQuery over SQL and VertiPaq require the same patterns to optimize time intelligence calculations, even though the reasons are different. In VertiPaq, we try to stay away from DAX time intelligence functions to avoid large materialization at the day level. With SQL, materialization does not always happen because Tabular tries to push the grouping down to SQL. Still, time intelligence calculations often result in complex queries, and it is better to avoid the complexity by using simpler DAX code.

Check out the performance difference.

2 Comments

Troubleshooting a Slow Deletion

Aaron Bertrand has an admission:

Before looking at the code path, the query, or the execution plan, I didn’t even believe the application would regularly perform a hard delete. Teams typically soft delete “expensive” things that are ever-growing (e.g., change an IsActive column from 1 to 0). Deleting a user is bound to be expensive, because there are usually many inbound foreign keys that have to be validated for the delete to succeed. Also, every index has to be updated as part of the operation. On top of that, there are often triggers that fire on delete.

While I know that we do sometimes soft delete users, the engineer assured me that the application does, in some cases, hard delete users.

Click through for the full story and a minor bout of self-petard-hosting. I’m as guilty as anyone else of jumping to conclusions, and this is a good reminder to go through the process even when you think you know the answer.

Comments closed

Weirdness with Aggregation

Erik Darling digs into a problem. Part 1 sets up the scenario:

Here’s the query plan, which yes, you’re reading correctly, runs for ~23 seconds, fully joining both tables prior to doing the final aggregation.

I’m showing you a little extra here, because there are missing index requests that the optimizer asks for, but we’ll talk about those in tomorrow’s post.

The wait stats for this query, since it’s running in Batch Mode, are predictably HT-related.

Part 2 covers those missing indexes:

I’ve taken a small bit of artistic license with them.

The crappy thing is… They really do not help and in some cases things get substantially worse.

Maybe it’s because it’s early and I’m trying to compile things in my head rather than actually trying it out, but it seems like a combo of CTE + CROSS APPLY or a pair of CROSS APPLY statements could work better (especially with a good index), assuming that join doesn’t need to be in place. Given the query as it is, with two MAX() aggregations and no GROUP BY clause, that could be an avenue for improvement, though one I have not actually tested. Nonetheless, read both of Erik’s posts.

Comments closed

Troubleshooting a Stored Procedure Performance Problem

Deborah Melkin digs in:

In fact, I just fixed a stored procedure that had its performance change due to an upgrade to SQL Server 2022 last week. We were doing internal testing in our test environment and one proc suddenly took significantly longer than it should have. But it was also a proc that had not changed in months so it was very clear that the reason it became a problem was due to the upgrade.

Click through for some detail on how Deborah figured it out.

Comments closed

Recompile Hints and Query Store

Erik Darling talks about one very popular tool and one very popular technique and what happens when they mix:

But let’s say one day you have performance issues regardless of all the recompiling in the world. No matter what set of parameters get passed in, your procedure is just sleepy-dog slow.

Things get so bad that you hire a young, handsome consultant with reasonable rates like myself to help you figure out why.

The plan cache will be pretty useless for troubleshooting the recompile-hinted queries, but we can still use Query Store.

Read on for more detail and a demonstration.

Comments closed

An Overview of Join Elimination

Chad Callihan doesn’t need solo rows; he needs team players:

SQL Server can be pretty smart when it comes to avoiding work it’s not required to do. One instance of this is the concept of join elimination. Join elimination occurs when queries involving joins may only need to check one table instead of two (or more) based on foreign key constraints.

Let’s take a look at join elimination in action.

Read on for one example of join elimination and one more reason why those foreign key constraints are so useful.

Comments closed

Being Smart about Missing Index Requests

Erik Darling doesn’t trust the system:

SQL Server’s missing index requests (and, by extension, automatic index management) are about 70/30 when it comes to being useful, and useful is the low number.

The number of times I’ve seen missing indexes implemented to little or no effect, or worse, disastrous effect… is about 70% of all the missing index requests I’ve seen implemented.

This has been pretty close to my experience as well. Click through for a much better approach to the task.

Comments closed

Fixing Eager Spooling

Erik Darling sends it to the moon:

Probably the most fascinating thing about Eager Index Spools to me is how often the optimizer will insert them into execution plans, often to a query’s detriment.

In a sane world, a non-loop join plan would be chosen, a missing index request would be registered that matches whatever would have been spooled into an index, and we’d all have an easier time.

Read on for a few examples of the problem and two separate ways you can fix it. Remember, kids: friends don’t let friends eagerly spool.

Comments closed

Preventing ASYNC_NETWORK_IO Waits in SQL Server

Vlad Drumea troubleshoots a pernicious wait type:

In this post I’ll go over what the ASYNC_NETWORK_IO wait type is, when it occurs, and how you can tell if the application is causing it.

Lately I’ve had to troubleshoot a few situations where the issue seemed like a poor performing query, but the apparent slowdown was due to applications causing excessive ASYNC_NETWORK_IO waits in SQL Server.

This particular wait doesn’t always happen because of slow apps, though that’s often the case. Vlad breaks out several reasons why you might see the wait and explains what you can do to fix the problem.

Comments closed