Scheduling Jupyter Notebooks

Matthew Seal, et al, explain how they schedule runs of Jupyter notebooks:

On the surface, notebooks pose a lot of challenges: they’re frequently changed, their cell outputs need not match the code, they’re difficult to test, and there’s no easy way to dynamically configure their execution. Furthermore, you need a notebook server to run them, which creates architectural dependencies to facilitate execution. These issues caused some initial push-back internally at the idea. But that has changed as we’ve brought in new tools to our notebook ecosystem.

The biggest game-changer for us is Papermill. Papermill is an nteract library built for configurable and reliable execution of notebooks with production ecosystems in mind. What Papermill does is rather simple. It take a notebook path and some parameter inputs, then executes the requested notebook with the rendered input. As each cell executes, it saves the resulting artifact to an isolated output notebook.

Papermill does look quite interesting.

Using Notebooks At Netflix

Michelle Ufford, et al, explain why and how they use Jupyter Notebooks at Netflix:

Notebooks were first introduced at Netflix to support data science workflows. As their adoption grew among data scientists, we saw an opportunity to scale our tooling efforts. We realized we could leverage the versatility and architecture of Jupyter notebooks and extend it for general data access. In Q3 2017 we began this work in earnest, elevating notebooks from a niche tool to a first-class citizen of the data platform.

From our users’ perspective, notebooks offer a convenient interface for iteratively running code, exploring output, and visualizing data — all from a single cloud-based development environment. We also maintain a Python library that consolidates access to platform APIs. This means users have programmatic access to virtually the entire platform from within a notebook.Because of this combination of versatility, power, and ease of use, we’ve seen rapid organic adoption for all user types across the entire Data Platform.

Today, notebooks are the most popular tool for working with data at Netflix.

Good article.  I love notebooks for two reasons:  pedagogical purposes (it’s easier to show a demo in a notebook) and forcing you to work linearly.

Writing Better Jupyter Notebook Code

Henk Griffioen shows how to write Python code in your IDE of choice and then synchronize a Jupyter Notebook with the results:

How can you get the interactivity back and get our changes immediately in our Notebook? Add %autoreload at the top of your Notebook:

%loadext autoreload # Load the extension%autoreload 2 # Autoreload all modules

%autoreload is a Jupyter extension that reloads modules before executing your code. Functions and classes loaded in notebooks get their functionality updated every time you execute a cell. This means that when new code is saved in the editor, the changes are immediately loaded in your Notebook if you run a cell.

Using %autoreload bridges the gap between Notebook and IDE. You gain all the benefits of an IDE, but you’re still as flexible as before! See the GIF at the top as an example.

That’s a useful trick.  I’ve tended to use notebooks more for post-hoc work, where I’ve already structured my code and want to formalize it for others to use.

Analyzing Clickstream Data With Spark

Tony Cruz and Denny Lee analyze advertising data in Spark and predict click counts given certain input features:

Let’s look at a concrete example with the Click-Through Rate Prediction dataset of ad impressions and clicks from the data science website Kaggle.  The goal of this workflow is to create a machine learning model that, given a new ad impression, predicts whether or not there will be a click.

To build our advanced analytics workflow, let’s focus on the three main steps:

  • ETL

  • Data Exploration, for example, using SQL

  • Advanced Analytics / Machine Learning

The Databricks blog has a couple other examples, but this was the most interesting one for me.

Sharing R Notebooks

Hanyu Cui and Hossein Falaki show how to share a notebook using RMarkdown:

RMarkdown is the dynamic document format RStudio uses. It is normal Markdown plus embedded R (or any other language) code that can be executed to produce outputs, including tables and charts, within the document. Hence, after changing your R code, you can just rerun all code in the RMarkdown file rather than redo the whole run-copy-paste cycle. And an RMarkdown file can be directly exported into multiple formats, including HTML, PDF,  and Word.

Click through for the demo.

Introducing Azure Notebooks

Zach Stagers has an introductory post to Azure Notebooks:

No installation, no maintenance

As with any PaaS solution, Azure Notebooks makes it far quicker and easier to get up and running, as there’s no download or installation required. Microsoft handles all the maintenance for you too!

I’m working on a fairly big project using Azure Notebooks.  It’s very helpful getting 1GB of space, so I can include all of my data, images, etc. from a fairly large number of notebooks.  The big downside is that the server running these notebooks is pretty slow—even for a fairly simple ARIMA model, I had it sitting there for 10 minutes at 100% CPU.  So don’t expect to run a heavy workload against it.

Jupyter Notebooks In Azure

Steve Jones looks at using Jupyter Notebooks in Azure:

There’s a new feature in Azure, and I stumbled on it when someone posted a link on Twitter. Apologies, I can’t remember who, but I did click on the Azure Notebooks link and was intrigued. I’ve gotten Jupyter notebooks running on my local laptop, but these are often just on one machine. Having a place to share a notebook in the cloud is cool.

Once I clicked on the link, I found these are both R and Python notebooks, as well as F#. These allow you to essentially build a page of code and share it. It’s kind of like a REPL, kind of like a story. It’s a neat way of working through a problem. I clicked the Get Started link to get going and was prompted for a User ID.

I’m a major fan of using notebooks for validating results as well as training people.

Deploying Jupyter Notebooks

Teja Srivastasa has an example of deploying a Jupyter notebook for production use on AWS:

No one can deny how large the online support community for data science is. Today, it’s possible to teach yourself Python and other programming languages in a matter of weeks. And if you’re ever in doubt, there’s a StackOverflow thread or something similar waiting to give you the perfect piece of code to help you.

But when it came to pushing it to production, we found very little documentation online. Most data scientists seem to work on Python notebooks in a silo. They process large volumes of data and analyze it — but within the confines of Jupyter Notebooks. And most of the resources we’ve found while growing as data scientists revolve around Jupyter Notebooks.

Another option might be to use JupyterHub.

JupyterLab Now Available

Project Jupyter announces the general availability of JupyterLab:

JupyterLab is an interactive development environment for working with notebooks, code and data. Most importantly, JupyterLab has full support for Jupyter notebooks. Additionally, JupyterLab enables you to use text editors, terminals, data file viewers, and other custom components side by side with notebooks in a tabbed work area.

JupyterLab provides a high level of integration between notebooks, documents, and activities:

  • Drag-and-drop to reorder notebook cells and copy them between notebooks.

  • Run code blocks interactively from text files (.py, .R, .md, .tex, etc.).

  • Link a code console to a notebook kernel to explore code interactively without cluttering up the notebook with temporary scratch work.

  • Edit popular file formats with live preview, such as Markdown, JSON, CSV, Vega, VegaLite, and more.

I like this, as I’m a big fan of notebooks but sometimes you just want to write some diagnostic queries and an IDE is way better for that. H/T Giovanni Lanzani

Installing Jupyter Notebook Kernels

Nigel Meakins continues his Jupyter series by showing how to install various kernels:

Jupyter-Scala

This can be downloaded from here. Unzip and run the jupyter-scala.ps1 script on windows using elevated permissions in order to install.

The kernel files will end up in <UserProfileDir>\AppData\Roaming\jupyter\kernels\scala-develop and the kernel will appear in Jupyter with the default name of ‘Scala (develop)’. You can of course change this in the respective kernel.json file.

Click through to see how to install a few other kernels with various levels of configuration.

Categories

March 2019
MTWTFSS
« Feb  
 123
45678910
11121314151617
18192021222324
25262728293031