Press "Enter" to skip to content

Category: Machine Learning

Serving Databricks Models via API Management Endpoints

Drew Furgiuele makes available a model:

When it comes to generative AI projects I’d argue that the hardest and most tedious part has moved into a new area: hosting and serving your models. Whether you’re working with CPU intensive models, or models that require GPU horsepower, sourcing the hardware, building out deployment pipelines, configuring monitoring, and then securing everything is real, serious work that requires everyone to lean in to get it right.

And then, there’s the real question of how you’re going to use those models: will you be setting up automation and doing batch processing using your models and infrastructure? Or do you want to get really serious and offer up real-time inference? If the latter, you can add one more thing to solve for: managing your front-end APIs that you will have to build to support that use case.

Click through to see how you can use an API management tool (like Azure API Management) to assist in these things.

Leave a Comment

Local Text Summarization via DistilBart

Muhammad Asad Iqbal Khan summarizes a document:

Text summarization represents a sophisticated evolution of text generation, requiring a deep understanding of content and context. With encoder-decoder transformer models like DistilBart, you can now create summaries that capture the essence of longer text while maintaining coherence and relevance.

In this tutorial, you’ll discover how to implement text summarization using DistilBart. You’ll learn through practical, executable examples, and by the end of this guide, you’ll understand both the theoretical foundations and hands-on implementation details. After completing this tutorial, you will know:

Click through for the article.

Leave a Comment

Kernel Methods in Python

Matthew Mayo does a bit of kernel work:

Kernel methods are a powerful class of machine learning algorithm that allow us to perform complex, non-linear transformations of data without explicitly computing the transformed feature space. These methods are particularly useful when dealing with high-dimensional data or when the relationship between features is non-linear.

Kernel methods rely on the concept of a kernel function, which computes the dot product of two vectors in a transformed feature space without explicitly performing the transformation. This is known as the kernel trick. The kernel trick allows us to work in high-dimensional spaces efficiently, making it possible to solve complex problems that would be computationally infeasible otherwise.

Read on for the pros and cons of kernel methods and a pair of techniques that use them.

1 Comment

Shrinking ONNX Files

Pete Warden breaks out the shrink ray:

I’ve been using the ONNX Runtime a lot recently, and while it has been a lot of fun, there are a few things I’ve missed from the TensorFlow Lite world. The biggest (no pun intended) is the lack of tools to shrink the model file size, something that’s always been essential in the mobile app world. You can quantize using the standard ONNX tools, but in my experience you’ll often run into accuracy problems because all of the calculations are done at lower precision. These are usually fixable, but require some time and effort.

Read on for Pete’s preferred alternative and a new tool to help with this.

Comments closed

Working with the Azure AI Document Service

Tomaz Kastrun continues a series on Azure AI. First up is a visual review of the Azure AI Document service:

Vision and Document services gives your apps the ability to analyze images, process documents and use technologies for optical character recognition (OCR) with combinations to machine learning.

That product has gone through a few name iterations, including Document Recognizer. But wait, there’s more!

Tomaz also takes a look at the Python SDK:

Vision and Document SDK for Python gives you extra extensibility of the services to add it to your apps.

Using Vision and Document SDK with Python, you will need to have the resource up and running (for the starters go with free pricing tier (F0)) and get the Document intelligence API Key and Endpoint address.

Click through for an example of how that works.

Comments closed

Using the Azure AI Language and Translation Python SDK

Tomaz Kastrun continues a series on Azure AI:

Using SDK options for “Language + Translation” service is

pip install azure-ai-textanalytics==5.2.0

and adding your endpoint in format like: https://yyyyy_azurehub_xxxxxxx.cognitiveservices.azure.com/

and secret to your endpoint. And you will also need the region name (e.g.: west-europe).

Once you’ve set up the necessary credentials, Tomaz shows how easy it is to call the service.

Comments closed