Press "Enter" to skip to content

Category: Indexing

Minimal Logging into Empty Clustered Indexes

Paul White explains how to perform minimal logging when using the INSERT..SELECT pattern to insert into an empty table with a clustered index:

The summary top row suggests that all inserts to an empty clustered index will be minimally logged as long as TABLOCK and ORDER hints are specified. The TABLOCK hint is required to enable the RowSetBulk facility as used for heap table bulk loads. An ORDER hint is required to ensure rows arrive at the Clustered Index Insert plan operator in target index key order. Without this guarantee, SQL Server might add index rows that are not sorted correctly, which would not be good.

Unlike other bulk loading methods, it is not possible to specify the required ORDER hint on an INSERT...SELECT statement. This hint is not the same as using an ORDER BY clause on the INSERT...SELECT statement. An ORDER BY clause on an INSERTonly guarantees the way any identity values are assigned, not row insert order.

Read on to see what you can do.

Comments closed

Compress Those Indexes

Pamela Mooney reminds us that if you’re going to compress your heap or clustered index, remember those non-clustered indexes as well:

We compress to gain space, correct? So why sacrifice it to our indexes?

Here is a script (complete with demo databases and tables) that will find the culprits and fix them for you.  Put it (minus the demo databases and tables) in a job, and quit worrying about this.  Your tables (and indexes) will be sparkling clean. You’re welcome.

Click through for the script. It’s a good reminder that compressing a clustered index does not automatically compress non-clustered indexes—nor should it, as these won’t necessarily compress at the same ratio because data type makeup can differ.

Comments closed

READPAST In Action

Erik Darling shows how READPAST is no panacea:

Locking hints can be really handy in these situations, especially the READPAST hint. The documentation for it says that it allows you to skip over row level locks (that means you can’t skip over page or object level locks).

What it leaves out is that your READPAST query may also need to try to take row level shared locks.

Read on for an example as well as an alternative which ends up being better in this case.

Comments closed

The (Un)Importance of Index Fragmentation

Tibor Karaszi argues that index fragmentation is a less serious issue than most DBAs think:

You know the story. Every week or so, we defragment the indexes. Many of us uses Ola Hallengren’s great script for this, some uses Maintenance Plans, and there are of course other alternatives as well. But are we just wasting time and effort? Quite probably we are. I’m going to start with some basics, and then do some reasoning, and finally give you some numbers of a very simple test that I ran. The T-SQL code is available. If you give it a try, please let us know your finding for your environment by adding a comment. I will do some generalizations and simplifications, to avid this post being 10 times longer.

Jeff Moden has a couple of great talks on the topic which really pushed me in this direction. Grab his slides from the SQL Saturday site for a much deeper look at this topic.

Comments closed

The Performance Hit From Ignoring Duplicate Keys

Paul White explains why there is a big performance hit when using IGNORE_DUP_KEY on clustered indexes:

The IGNORE_DUP_KEY index option can be specified for both clustered and nonclustered unique indexes. Using it on a clustered index can result in much poorer performance than for a nonclustered unique index.

The size of the performance difference depends on how many uniqueness violations are encountered during the INSERT operation. The more violations, the worse the clustered unique index performs by comparison. If there are no violations at all, the clustered index insert may even perform better.

I use IGNORE_DUP_KEY primarily in cases like queue tables where I might be queuing up changes to migrate to a warehouse and where the chance of collision is low but non-zero. It looks like pushing much beyond that pattern can be devastating for performance.

Comments closed

Important Considerations with Indexed Views

Jason Brimhall takes us through a few important considerations with indexed views:

The creation of this view has chewed up a bunch of storage. It has jumped right up to the number two spot on the biggest objects list within this database. You can see that differences by comparing the highlighted rows to the previous image. The vPerson view is highlighted in red in this second image to help point it out quickly.

Surely this must be a contrived example and people don’t really do this in the real world, right? The answer to that is simply: NO! It DOES happen. I see situations like this all too often. Far too often, large text fields are added to an indexed view to make retrieval faster. I have mimicked that by adding in two XML columns from the Person.Person table. This is definitely overkill because a simple join back to the table based on the BusinessEntityID would get me those two columns. All I have effectively done is duplicated data being stored and I have achieved that at the low low cost of increased storage of 25% for this small database. If you are curious, the column count between the Person.Person table and this new view is 13 columns each.

Jason takes us through a couple more gotchas and provides some important advice you should follow if you think indexed views might be a fit for you.

Comments closed

Included Columns on Filtered Indexes

Rob Farley take a look at included columns on filtered indexes:

First let’s think a little about indexes in general.

An index provides an ordered structure to a set of data. (I could be pedantic and point out that reading through the data in an index from start to end might jump you from page to page in a seeming haphazard way, but still as you’re reading through pages, following the pointers from one page to the next you can be confident the data is ordered. Within each page you might even jump around to read the data in order, but there is a list showing you which parts (slots) of the page should be read in which order. There really is no point in my pedantry except to answer those equally pedantic who will comment if I don’t.)

And this order is according to the key columns – that’s the easy bit that everyone gets. It’s useful not only for being able to avoid re-ordering the data later, but also for being able to quickly locate any particular row or range of rows by those columns.

Rob does a great job of covering some of the nuances of filtered indexes.

Comments closed

Cancelling Resumable Index Creation

Brent Ozar takes us through a couple considerations when using online, resumable index creation:

In SSMS, you’re used to being able to click the “Cancel” button on your query, and having your work rolled back.

You’re also used to being able to kill a query, and have it automatically roll back.

Neither of those are true with resumable index creations. In both cases, whether you kill the index creation statement or just hit the Cancel button in SSMS to abort your request, your index creation statement is simply paused until you’re ready to come back to it. (Or, it’s ready to come back to haunt you, as we saw above.)

There are some good things to keep in mind here.

Comments closed

Finding Missing Index Hints in Query Store

Grant Fritchey shows us another place where we can find missing index hints:

A couple of notes on the query. I cast the query_plan as xml so that I can use the XQuery to pull out the information. It is possible that the plan might be so large that you get an error because of the limit on nesting levels within XML. Also, I aggregate the information from the sys.query_store_runttime_stats. You may want to modify this to only look at limited ranges. I’ll leave that to you as an exercise.

Do read Grant’s warning in the conclusion.

Comments closed

Benefits of Inline Indexes

Phil Factor covers a topic fairly close to my heart:

Usually, the added features of the CREATE TABLE syntax in new releases of SQL Server are esoteric, and unless you are dealing with memory-optimized tables or other esoteric stuff, they aren’t of great interest. However, the Inline INDEX for both a table and column index has just crept in quietly with SQL Server 2014 (12.x). This was interesting because the SQL Server team back-fitted it to all tables rather than just in-memory OLTP tables for which it was, at the time, found necessary. The new syntax was introduced which allows you to create certain index types inline with the table definition. These could be at column level, concerning just that column, or at the table level, with indexes containing several columns.

Why interesting? This affects multi-statement table functions, user-defined table types, table-valued parameters as well as table variables. It was considered a game-change for table variables because, for a start, it allowed non-unique indexes or explicit clustered indexes to be declared on columns for the first time because you can create indexes on table variables as part of the table definition. Of more significance were the table-level indexes that allowed you to specify multi-column indexes. Previous releases had allowed multi-column primary or unique constraints, but not explicitly named indexes. You still cannot declare an index after the table is created, which is a shame as there are good reasons for being able to do so after a table is stocked with data. Any sort of large import of data into a table that is over-indexed or prematurely-indexed is doomed to crawl rather than to run. I’ll show this later on in this article.

Click through for an analysis of inline indexes themselves as well as how they fit on table variables—something I tend not to do much.

Comments closed