Exploring Taxi Data

Kevin Feasel

2016-04-20

Hadoop, R

David Smith ties together two of my favorite technologies in R and Hadoop to analyze New York City taxi data:

Debraj GuhaThakurta, Senior Data Scientist, and Shauheen Zahirazami, Senior Machine Learning Engineer at Microsoft, demonstrate some of these capabilities in their analysis of 170M taxi trips in New York City in 2013 (about 40 Gb). Their goal was to show the use of Microsoft R Server on an HDInsight Hadoop cluster, and to that end, they created machine learning models using distributed R functions to predict (1) whether a tip was given for a taxi ride (binary classification problem), and (2) the amount of tip given (regression problem). The analyses involved building and testing different kinds of predictive models. Debraj and Shauheen uploaded the NYC Taxi data to HDFS on Azure blob storage, provisioned an HDInsight Hadoop Cluster with 2 head nodes (D12), 4 worker nodes (D12), and 1 R-server node (D4), and installed R Studio Server on the HDInsight cluster to conveniently communicate with the cluster and drive the computations from R.

To predict the tip amount, Debraj and Shauheen used linear regression on the training set (75% of the full dataset, about 127M rows). Boosted Decision Trees were used to predict whether or not a tip was paid. On the held-out test data, both models did fairly well. The linear regression model was able to predict the actual tip amount with a correlation of 0.78 (see figure below). Also, the boosted decision tree performed well on the test data with an AUC of 0.98.

If you’re looking for a data set for exploration, this is certainly a good one.

SQL Server JDBC Driver Update

Microsoft is releasing a preview of their JDBC driver:

We are committed to continuously updating the JDBC driver to bring more feature support for connecting to SQL Server, Azure SQL Database, and Azure SQL DW. Please stay tuned for upcoming releases that will have additional feature support. This applies to our wide range of client drivers including PHP 7.0, Node.js, ODBC, and ADO.NET which are already available.

Don’t forget Hadoop integration (e.g., via Sqoop) while you’re at it…

Getting Started With Hadoop

Kevin Feasel

2016-03-25

Hadoop

Ginger Grant has some pointers on getting started with the Hortonworks Data Platform sandbox:

Previously, spinning up a virtual machine meant purchasing software. No more, as there is now an open source application. In the example shown here, the Linux operating system will be installed, you can put any operating system you want on your virtual machine, provided of course you have a license for it. If you don’t feel comfortable installing non-released versions of code like SQL Server 2016, on your pc, a virtual machine is a great way to test it out. You will need to provide your own operating system, but there are trial versions you can use for limited periods of time as well. The open source virtual machine Oracle VM Virtual Box is the only open source version of a virtual machine software. You can download it here. This software is needed prior to installing the Hortonworks Sandbox. Obviously Hortonworks is not the only version of Hadoop available, Cloudera has a Hadoop VM too, which you can download as well. Personally I am not a use fan of the Cloudera Manager, which is why I prefer Hortonworks, but either will work with polybase.

I’m personally a fan of VMware Player for VMs, but either will work well for the task.

HDInsight + Power BI + Spark

Reza Rad has a nice walkthrough on integrating several powerful technologies:

Power BI can connect to many data sources as you know, and Spark on Azure HDInsight is one of them. In area of working with Big Data applications you would probably hear names such as Hadoop, HDInsight, Spark, Storm, Data Lake and many other names. Spark and Hadoop are both frameworks to work with big data, they have some differences though. In this post I’ll show you how you can use Power BI (either Power BI Desktop or Power BI website) to connect to a sample of Spark that we built on an Azure HDInsight service. by completing this section you will be able to create simple spark on Azure HDInsight, and run few Python scripts from Jupyter on it to load a sample table into Spark, and finally use Power BI to connect to Spark server, load, and visualize the data.

If you’re totally unfamiliar with Spark but interested in data processing, now’s a good time to start digging into the topic.

Why Data Lakes?

James Serra explains why you might want to use a data lake:

To refresh, a data lake is a landing zone, usually in Hadoop, for disparate sources of data in their native format.  Data is not structured or governed on its way into the data lake.  This eliminates the upfront costs of data ingestion, especially transformation.  Once data is in the lake, the data is available to everyone.  You don’t need a priority understanding of how data is related when it is ingested, rather, it relies on the end-user to define those relationships as they consume it.  Data governorship happens on the way out instead of on the way in.  This makes a data lake very efficient in processing huge volumes of data.  Another benefit is the data lake allows for data exploration and discovery, to find out if data is useful or to create a one-time report.

I’m still working on a “data swamp” metaphor, in which people toss their used mattresses and we expect to get something valuable if only we dredge a little more.  Nevertheless, read James’s article; data lakes are going to move from novel to normal over the next few years.

Categories

August 2017
MTWTFSS
« Jul  
 123456
78910111213
14151617181920
21222324252627
28293031