# Category: DAX

To calculate the quartile, we’re going to use the PERCENTILEX.INC DAX function. The PERCENTILEX.INC function returns the number at the specified percentile. So for example, if I had numbers 0 and 100 in my data set, the 25th percentile value would be 25. The 50th percentile value would be 50 and the 75th percentile value would be 75, and you can figure out what the 100th percentile value would be.

Dustin shares an example with his NFL data set and also walks us through a couple of tricky situations.

CALCULATE is somewhat unique in that it evaluates the 2nd, 3rd, …nth parameter first, and evaluates the first parameter last using values from my Filter Context Box. I think it is extremely helpful to list briefly the steps CALCULATE performs whenever it is invoked. (So maybe we are not at 10,000 feet, but 5,000?)

The CALCULATE function performs the following operations:

1. Create a new filter context by cloning the existing one. (***Important visual step!***)

2. Move rows in the row context to the new clone filter context box one by one replacing filters if it references the same column. (We will ignore this step for this post)

3. Evaluate each filter argument to CALCULATE in the old filter context and then add column filters to the new clone filter context box one by one, replacing column filters if it references the same column.

4. Evaluate the first argument in the newly constructed filter context.

5. Destroy this newly created, cloned filter context box before moving on to calculating the next “cell.”

If you’re interested in getting started with DAX, this is a good place to begin.

Consider the following measure.

 12345 `Margin := ``IF` `(``    ``[Sales Amount] > 0 && [Total Cost] > 0,``    ``[Sales Amount] - [Total Cost]``)`

The basic idea is that the difference between Sales Amount and Total Cost should be evaluated only whether both measures are greater than zero. In such a condition, the DAX engine produces a query plan that evaluates each measure twice. This is visible in the storage engine requests generated for the following query.

Read on to see how Marco avoids this performance issue.

The TREATAS function can be used to detect filters from your visual (filter context) and then apply these filters to a disconnected table in your data model.

• It takes a source table (first parameter) and applies the values from that table to columns in a target table (second and subsequent parameters).

• You can use a function like VALUES as the first parameter to detect the initial filter context in a visual and hence TREATAS can propagate filter context to the target table.

• You do not need to have a physical relationship between the source table and the target table.  It therefore means that TREATAS can be used as a virtual many to many relationship.

• You can pass multiple filters (columns) from the source table to the target table.  TREATAS can therefore can be used to apply multiple relationships (ie on more than one column) between tables.

Read on for a good example of how this works.

This post shows how you can generate optimized multi-value DAX parameters in SSRS and achieve greater performance compared to the DAX PathContains function. This will be a short post that provides the SSRS expression to convert multiple SSRS parameters into a double-pipe delimited string for use in a DAX query. In other words, the goal is to use the DAX OR operator (||) instead of the PathContains function. I’m assuming the reader has experience with SSRS, so not all steps will be shown.

Read on for the example, which ended up being a 16X performance improvement.

Variables in DAX is a relatively new feature and is available in

• Power BI Desktop
• Excel 2016
• SSAS Tabular 2016

Variables are not available in Excel 2013 or Excel 2010.

Click through to see how to assign and use variables.  It’s interesting to see how they’re local to a measure, so at this point at least, you can’t share variables between measures.  Given what DAX is supposed to be, that’s probably the right choice.

The Check Formula button is an easily overlooked feature. However, before I hit ok and save my DAX Measure I ALWAYS press this button first! But what exactly does this button do? Well it’s checking your DAX syntax and making sure everything is written correctly. Now you COULD simply hit OK after writing your DAX and see if it errors, this is true. However when doing that your data model is actually attempting to calculate the DAX measure in the background as well. Not a big deal with a few thousand rows, but if you’re working with a model that has millions of rows then that could take a long time for it to calculate, and then error!

The smart thing to do is to check your DAX syntax using the Check Formula button BEFORE hitting ok. Checking your DAX syntax doesn’t run your calculation and returns a rewarding No errors in formula output if everything was written correctly. Such a simple thing that can save you SO MUCH TIME! I highly recommend as a best practice to always use this before hitting ok and saving your measures, you’ll thank me later.

There have already been many posts/articles/books written about the subject of how CALCULATE and FILTER works, so I’m not going to repeat all that information here. Noteworthy resources (by “the Italians” of course):

In this blog post I’d rather discuss a performance issue I had to tackle at a client. There were quite a lot of measures of the following format:

Click through for a couple iterations of this.