Press "Enter" to skip to content

Category: Data Lake

Moving Data Between Data Lakes

Jeffrey Verheul shows us how to use AdlCopy to migrate data from one Azure Data Lake to another:

Migrating data from one Data Lake to the other
We started out with a test version of a Data Lake, and this week I needed to migrate data to the production version of our Data Lake. After a lot of trial and error I couldn’t find a good way to migrate data. In the end I found a tool called AdlCopy. This is a command-line tool that copies files for you. Let me show you how easy it is.

Download & Install
AdlCopy needs to be installed on your machine. You can find the download here. By default the tool will install the files in “C:\Users\\Documents\AdlCopy\”, but this can be changed in the setup wizard.

Click through to see how to use this tool.

Comments closed

Dataflows In Power BI

James Serra gives us a preview of Power BI Dataflows:

In short, Dataflows integrates data lake and ETL technology directly into Power BI, so anyone with Power Query skills (yes – Power Query is now part of Power BI service and not just Power BI Desktop and is called Power Query online) can create, customize and manage data within their Power BI experience (think of it as self-service data prep).  Dataflows include a standard schema, called the Common Data Model (CDM), that contains the most common business entities across the major functions such as marketing, sales, service, finance, along with connectors that ingest data from the most common sources into these schemas.  This greatly simplifies modeling and integration challenges (it prevents multiple metadata/definition on the same data).  You can also extend the CDM by creating custom entities.  Lastly – Microsoft and their partners will be shipping out-of-the-box applications that run on Power BI that populate data in the Common Data Model and deliver insights through Power BI.

A dataflow is not just the data itself, but also logic on how the data is manipulated.  Dataflows belong to the Data Warehouse/Mart/Lake family.  Its main job is to aggregate, cleanse, transform, integrate and harmonize data from a large and growing set of supported on-premises and cloud-based data sources including Dynamics 365, Salesforce, Azure SQL Database, Excel, SharePoint.  Dataflows hold a collection of data-lake stored entities (i.e. tables) which are stored in internal Power BI Common Data Model compliant folders in Azure Data Lake Storage Gen2.

Also check out the comments for some clarification on why you’d want to use Dataflows rather than doing the work directly in the data lake.

Comments closed

Overview: U-SQL Database Projects

Zach Stagers gives us an overview of the new U-SQL Database Project structure:

Source Control

The projects integrates much more nicely with TFS than the older “U-SQL Project” does.

It actually gives you the icons (padlock, check mark, etc..) in the solution explorer, so it actually looks like it’s under source control!

Something that I’d really hoped had been fixed, but hasn’t, is when copying and renaming an existing item, it doesn’t recognize the rename. You have to undo the checkout of the non-existent object (the copy, before being renamed):

Read on for more improvements.

Comments closed

Using Azure Data Lake Analytics With Integration Services

Yanan Cai announces that Azure Data Lake Analytics has a new task in the Azure Feature Pack for SQL Server Integration Services:

With ADLA Task in Azure Feature Pack, you can now orchestrate and create U-SQL jobs as a part of the SSIS workflow to process big data in the cloud. As ADLA is a serverless analytics service, you don’t need to worry about cluster creation and initialization, all you need is an ADLA account to start your analytics.

You can get the U-SQL script from different places by using SSIS built-in functions. You can:

  • Edit the inline U-SQL script in ADLA Task to call table valued functions and stored procedures in your U-SQL databases.

  • Use the U-SQL files stored in ADLS or Azure Blob Storage by leveraging Azure Data Lake Store File System Task and Azure Blob Download Task.

  • Use the U-SQL files from local file directly using SSIS File Connection Manager.

  • Use an SSIS variable that contains the U-SQL statements. You can also use SSIS expression to generate the U-SQL statements dynamically.

Read on for more information and a link to download the pack.

Comments closed

Data Lakes eBook

Melissa Coates has a free eBook available:

I wrote the updated content from a practical point of view, totally hype-free. The table of contents:

  • Modern Data Architecture
  • Business Needs Driving Data Architectures to Evolve and Adapt
  • Principles of a Modern Data Architecture
  • Data Lake + Data Warehouse: Complementary Solutions
  • Tips for Designing a Data Lake
  • Azure Technologies for Implementing a Data Lake
  • Considerations for a Successful Data Lake in the Cloud
  • Getting Started with a Data Lake

To download the ebook, BlueGranite will ask for you to register your information. That’s common for premium content like this. We take a low-key approach to sales, so I can assure you that registration only means you’ll receive notifications of new content that you may find interesting.

It’s the length of a good-sized paper, so you won’t have to invest dozens of hours of time to get the story.

Comments closed

Data Lakes And Data Swamps

Randolph West talks about data lakes:

Internet companies including search engines (Google, Bing), social media companies (Facebook, Twitter), and email providers (Yahoo!, Outlook.com) are managing data stores measured in petabytes. On a daily basis these organizations handle all sorts of structured and unstructured data.

Assuming they put all their data in one repository, that could technically be thought of as a data lake. These organizations have adapted existing tools, and even created new technologies, to manage data of this magnitude in a field called big data.

The short version: big data is not a 100 GB SQL Server database or data warehouse. Big data is a relatively new field that came about because traditional data management tools are simply unable to deal with such large volumes of data. Even so, a single SQL Server database can allegedly be more than 500 petabytes in size, but Michael J. Swart warns usif you’re using over 10% of what SQL Server restricts you to, you’re doing it wrong.

Incidentally, I’ll note that the term data swamp has a storied history here at Curated SQL.

Comments closed

Backing Up Azure Data Lake Store Data

Hugo Almeida has some hints for backing up Azure Data Lake Store data using Azure Data Factory:

Our Hadoop HDP IaaS cluster on Azure uses Azure Data Lake Store (ADLS) for data repository and accesses it through an applicational user created on Azure Active Directory (AAD). Check this tutorial if you want to connect your own Hadoop to ADLS.

Our ADLS is getting bigger and we’re working on a backup strategy for it. ADLS provides locally-redundant storage (LRS), however, this does not prevent our application from corrupting data or accidentally deleting it. Since Microsoft hasn’t published a new version of ADLS with a clone feature we had to find a way to backup all the data stored in our data lake.

We’re going to show you How to do a full ADLS backup with Azure Data Factory (ADF). ADF does not preserve permissions. However, our Hadoop client can only access the AzureDataLakeStoreFilesystem (adl) through hive with a “hive” user and we can generate these permissions before the backup.

Read the whole thing if you’re thinking of using Azure Data Lake Store.

Comments closed

Alerting On Azure Data Lake Store Data Usage

Jose Lara shows off an interesting feature in Azure Data Lake Store:

The massive scale and capabilities of Azure Data Lake Store are regularly used by companies for big data storage. As the number of files, file types, and folders grow, things get harder to manage and staying compliant becomes a greater challenge for companies. Regulations such as GDPR (General Data Protection Regulation) have heightened requirements for control and supervision of files that contain sensitive data.

In this blog post, I’ll show you how to set up alerts in your Azure Data Lake Store to make managing your data easier. We will create a log analytics query and an alert that monitors a specific path and file type and sends a notification whenever the path or file is created, accessed, modified, or deleted.

Auditing access has historically been tricky, so it’s nice that they were able to get that in.

Comments closed

Azure Data Lake Analytics Updates

Michael Rys has a boatload of new updates for Azure Data Lake:

The top items include expanding our built-in support for standard file formats with native Parquet support for extractors and outputters (in public preview) and ORC (in private preview)!

In addition, since the fast file set feature now has been generally released, we can consume hundreds of thousands of such files in bulk in a single EXTRACT statement. We will publish a blog at a later date to give you much more detailed information on how this capability helps you to process so many files efficiently in a scalable way.

Important aspects of processing files at scale include:

  1. the ability to generate many files from a rowset in a single statement, providing a way to dynamically partition the data for future use with Hadoop or Spark, or to provide individual files for customers. This has been our top customer ask on the ADL Feedback forum –and now it is in private preview!

  2. the ability to handle many small files. We recommend that you make your files large enough for the processing to be efficient (300MB to 4GB is a good range), but often, your file formats (e.g., images) or data ingestion pipelines (e.g., EventHub archives) are not able to reach that size. Thus, we are adding the ability to group several files into a vertex to increase efficiency and lower cost of your job (we have seen 10 to 30 times improvement in some customer jobs!).

Read on for the full changelog.

Comments closed

Using AU Analyzer To Lower Data Lake Analytics Costs

Matthew Hicks shows off the Data Lake Analytics AU Analyzer:

The AU Analyzer looks at all the vertices (or nodes) in your job, analyzes how long they ran and their dependencies, then models how long the job might run if a certain number of vertices could run at the same time. Each vertex may have to wait for input or for its spot in line to run. The AU Analyzer isn’t 100% accurate, but it provides general guidance to help you choose the right number of AUs for your job.

You’ll notice that there are diminishing returns when assigning more AUs, mainly because of input dependencies and the running times of the vertices themselves. So, a job with 10,000 total vertices likely won’t be able to use 10,000 AUs at once, since some will have to wait for input or for dependent vertices to complete.

In the graph below, here’s what the modeler might produce, when considering the different options. Notice that when the job is assigned 1427 AUs, assigning more won’t reduce the running time. 1427 is the “peak” number of AUs that can be assigned.

I like this kind of tooling, as it provides a realistic assessment of tradeoffs.

Comments closed