Press "Enter" to skip to content

Author: Kevin Feasel

Units Of Measure In The ShowPlan Schema

Grant Fritchey shows off the ShowPlan Schema:

Because the showplan schema contains notes throughout stating what the units of measure are, what each of the values means. For instance, I can explain why SerialDesiredMemory, DesiredMemory, RequestedMemory are identical:

…Provide memory grant estimate as well as actual runtime memory grant information. Serial required/desired memory attributes are estimated during query compile time for serial execution. The rest of attributes provide estimates and counters for query execution time considering actual degree of parallelism. SerialRequiredMemory: Required memory in KB if the query runs in serial mode. The query will not start without this memory. SerialDesiredMemory: Memory estimated to fit intermediate results in KB if the query runs in serial mode. RequiredMemory: Required memory in KB for the chosen degree of parallelism. If the query runs in serial mode, this is the same as SerialRequiredMemory. …

That’s taken directly from the 2017 schema. The units of measure are KB.

I’d never seen this before, so that’s going on my to-read list.

Comments closed

Kafka Streams And Time-Based Batching

Vladimir Vajda provides a warning for people using Kafka Streams:

To completely understand the problem, we will first go into detail how ingestion and processing occur by default in Kafka Streams. For example purposes, the punctuate method is configured to occur every ten seconds, and in the input stream, we have exactly one message per second. The purpose of the job is to parse input messages, collect them, and, in the punctuate method, do a batch insert in the database, then to send metrics.

After running the Kafka Stream application, the Processor will be created, followed by the initmethod. Here is where all the connections are established. Upon successful start, the application will listen to input topic for incoming messages. It will remain idle until the first message arrives. When the first message arrives, the process method is called — this is where transformations occur and where the result is stored for later use. If no messages are in the input topic, the application will go idle again, waiting for the next message. After each successful process, the application checks if punctuate should be called. In our case, we will have ten process calls followed by one punctuate call, with this cycle repeating indefinitely as long as there are messages.

A pretty obvious behavior, isn’t it? Then why is one bolded?

Read on for more, including how to handle this edge case.

Comments closed

Kafka And GDPR

Ben Stopford has some ideas for using Kafka in a GDPR world:

The simplest way to remove messages from Kafka is to simply let them expire. By default, Kafka will keep data for two weeks, and you can tune this to arbitrarily large periods of time as required. There is also an Admin API that lets you delete messages explicitly if they are older than some specified time or offset. But what if we are keeping data in the log for a longer period of time, say for Event Sourcing architectures or as a source of truth? For this, you can make use of compacted topics, which allow messages to be explicitly deleted or replaced by key.

Data isn’t removed from compacted topics in the same way as in a relational database. Instead, Kafka uses a mechanism closer to those used by Cassandra and HBase where records are marked for removal then later deleted when the compaction process runs. Deleting a message from a compacted topic is as simple as writing a new message to the topic with the key you want to delete and a null value.  When compaction runs the message will be deleted forever.

Click through for more information.

Comments closed

DevOps And Culture

Alex Yates points out a problem in how many people think of DevOps:

There is so much that is wrong with that conversation.

  • We could talk about the bottlenecks and the large amount of work in progress backed up in test – and the ways that could be fixed,

  • We could talk about the infrequent ‘big bang’ release in three months and the manual, error prone heroics that will probably be required to deliver it – and the ways that could be fixed,

  • We could talk about the misguided approach regarding branching strategies or the shared development database – and the ways they could be fixed,

  • We could talk about testing silos and the likelihood of drift and inconsistencies between different environments – and the ways they could be fixed,

  • We could talk about the word “DevOps-ing” – and why it should be burned along with anyone who uses it un-ironically. (And anyone who uses the word “irony” inappropriately or puts their commas at the end of the line.),

But I’m not going to talk about any of those things. I’m not going to talk about any of the things the customer said. I’m not going to talk about any of the technical issues or the possible solutions to those problems.

I’m going to talk about something much, much more important.

Read on to see what is much, much more important:  culture.

Comments closed

Troubleshooting Client Disconnections

Mike Hays looks at a trace flag that can help you troubleshoot why client connections drop:

About once a month, I get support ticket regarding SQL Server dropping an application’s or user’s connection.  The problem is SQL Server does not just randomly drop a connection and continue to work normally.  Some force outside the control of SQL Server breaks the connection.  By default, SQL Server does not record when this event occurs.

In my history of working with SQL Server, only in extreme situations have I ever seen SQL Server drop its connections.  The most common example is when SQL Server is in the process of shutting down.

Click through for the trace flag and details.

Comments closed

Collations Used In NVarchar To Varchar Conversions

Solomon Rutzky digs into collations:

So, the actual question is a bit more specific than would reasonably fit into a title, and it is:

In a WHERE condition (in Microsoft SQL Server, if that’s not obvious), when a string constant containing Unicode characters but not prefixed with a capital-N is compared to a column, which Collation (and hence Code Page) is used to do the implicit conversion of the Unicode characters into VARCHAR? Is it the Database’s default Collation, or the column’s Collation?

The answer has a lot more nuance than you might first think.  And for the record, it’s a duck.

Comments closed

Thinking About Scalable Persistent Memory

Ned Otter has a good post thinking about Scalable Persistent Memory:

There were other potential issues when using Persistent Memory, detailed in this blog post. But what’s not covered in that post is the fact that deploying NVIDMM-N reduced the memory speed and/or capacity, because they are not compatible with LRDIMM. This causes you to use RDIMM, which reduces capacity, and because NVDIMM-N operates at a slower speed than RDIMM, it also affects total memory speed.

HP has since released Gen10 servers, and they have changed the landscape for those seeking reduced latency by storing larger data sets in memory. For one thing, they raise the bar for what’s now referred to as Scalable Persistent Memory, with a total server capacity of 1TB. To be clear, NVDIMM-N is not used in this configuration. Instead, regular DIMMs are used, and they are persisted to flash via a power source (this was also the case for NVDIMM-N, but both the flash, DIMM, and power source were located on the NVDIMM-N).

Check it out.  I’m happy that things are improving, but it sounds like this won’t be a panacea.

Comments closed

When Data Factory Flows Don’t

Emma Stewart points out an issue that might vex newcomers to Azure Data Factory:

The data within the Data Lake store was organised into a Year and Month hierarchy for the folders, and each days transactions were stored in a file which was named after the day within the relevant month folder. The task then was to create a pipeline which copies the dataset in the Data Lake Store over to the dbo.Orders table in Azure SQL DB every day within the scheduled period (Q1 2016).

After creating all the json scripts and deploying them (with no errors), I clicked on the ‘Monitor and Manage’ tile to monitor the activities, check everything was working as it should be and monitor the progress. After waiting for at least 10 minutes, I started to get frustrated.

Click through for the fix and an explanation.

Comments closed

Upgrading Cassandra To Version 3

Mikhail Chinkov has a process for upgrading Cassandra from version 2 to the latest release of 3:

At first sight it should be obvious. Cassandra is a distributed storage and you’re able to upgrade each node independently. But also it’s a kind of tricky, because Cassandra has so many concepts and moving parts. Introducing such a major change, you’ll be probably excited about how not to break one.

Also, as with every DB upgrade, the most important outcome will be your app behaviour. Protocol versions support might be removed from the future versions. Storage might work another way application doesn’t expect. There might be a lot of pitfalls. So, to start getting the benefits of upgrade, we have to be 200% sure that the application works. And at least it won’t work worse with database.

The whole process is straightforward but there do seem to be a couple places where you can shoot yourself in the foot.

Comments closed

Availability Group Latency Reports

Sourabh Agarwal points out some new reports in Management Studio 17.4:

The Latency data collection functionality and the associated reports allows a database administrator to quickly discern the bottleneck in the log transport flow between the Primary and the Secondary replicas of an Availability Group. This feature does NOT answer the question “Is there latency in the Availability Group deployment?” but rather provides a way to understand why there is latency in the Availability Group Deployment. This functionality provides a way to narrow down the potential cause of latency in an Availability Group deployment.

There are some things that this report doesn’t capture, but it does give us a bit more insight.

Comments closed