Sairam Yeturi reduces ETL and ELT requirements:
Organizations often face challenges when trying to scale analytics across large volumes of data stored in centralized SQL databases. As business teams demand faster, more tailored insights, traditional reporting pipelines can become bottlenecks. By adopting Lakehouse architecture with Microsoft Fabric, business groups can mirror their SQL data into OneLake and organize it using the Medallion architecture—Bronze, Silver, and Gold layers. Materialized lake views play a crucial role in this setup, enabling automated, declarative transformations that clean and enrich data in the Silver layer. This empowers teams to build reliable dashboards and AI-driven insights on top of curated data, all while maintaining performance, governance, and security on a scale.
In this post, we will cover how enterprises can use materialized lake views to streamline data orchestration and enhance data quality, monitoring across silver and gold layers, while mirroring their SQL DB tables to Fabric in the Bronze layer.
The best use case for this is a scenario in which your underlying data is already essentially in a star schema or at least easily transformable into one, and you have no interest in modifying the data in the view directly. Do read the limitations before digging in, though, as there are some big ones.